Hydrobiologia

, Volume 479, Issue 1–3, pp 181–190 | Cite as

A laboratory system for examining the influence of light on diel activity of stream macro-invertebrates

  • Annette L. Schloss
Article

Abstract

I describe a laboratory system for investigating the role of light as a proximate cue for diel changes in locomotor activity and vertical location on the substrate of stream macro-invertebrates. The system consisted of computer-controlled halogen lamps positioned over a laboratory stream in which video-recordings were made of Stenonema modestum mayfly nymphs located on the undersides of unglazed tile substrates. Locomotor activity of study organisms in response to light changes were quantified during computer-programmed and reproducible light/dark (LD) cycles. The system provided the flexibility to simulate a variety of light environments so that the separate influences of light intensity and light change on diel activities of individuals and populations could be examined, which is difficult under natural light conditions. As a group, nymphs responded similarly to simulated twilight (light decrease from 7.9 × 102 to 6.9 × 10−2 μW cm−2 at a constant –1.9 × 10−3 s−1 rate of relative light change) and to natural twilight, suggesting that proposed mechanisms of light control of diel activities in nature can be adequately tested in the simulated environment. However, locomotor activity and vertical movements among individual mayflies were highly variable under controlled conditions, suggesting that physiological differences influence their responses to environmental conditions.

light-control relative light change diel periodicity mayflies benthic activity Stenonema 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, J. D., A. S. Flecker & N. L. McClintock, 1986. Diel epibenthic activity of mayfly nymphs, and its nonconcordance with behavioral drift. Limnol. Oceanogr. 31: 1057-1065.Google Scholar
  2. Bishop, J. E., 1969. Light control of aquatic insect activity and drift. Ecology 50: 371-380.Google Scholar
  3. Buchanan, C., B. Goldberg & R. McCartney, 1982. A laboratory method for studying zooplankton swimming behaviors. Hydrobiologia 94: 77-89.Google Scholar
  4. Buchanan, C. & J. F. Haney, 1980. Vertical migration of zooplankton in the arctic. A test of environmental controls. Am. Soc. Limnol. Oceanogr. Special Symposium 3: 66-79.Google Scholar
  5. Chaston, I., 1969. The light threshold controlling the periodicity of invertebrate drift. J. anim. Ecol. 38: 171-180.Google Scholar
  6. Cowan, C. A. & B. L. Peckarsky, 1994. Diel feeding and positioning periodicity of a grazing mayfly in a trout stream and a fishless stream. Can. J. Fish aquat. Sci. 51: 450-459.Google Scholar
  7. Daan, N. & J. Ringelberg, 1969. Further studies on the positive and negative phototactic reaction of Daphnia magna Straus, Neth. J. Zool. 19: 525-540.Google Scholar
  8. Daan, S. & J. Aschoff, 1975. Circadian rhythms of locomotor activity in captive birds and mammals: their variations with season and latitude. Oecologia 18: 85-99.Google Scholar
  9. Dill, L. M., 1987. Animal decision making and its ecological consequences: the future of aquatic ecology and behaviour. Can. J. Zool. 65: 803-811.Google Scholar
  10. Elliott, J. M., 1968. The daily activity patterns of mayfly nymphs. (Ephemeroptera). J. Zool. 155: 201-221.Google Scholar
  11. Flecker, A. S., 1992. Fish predation and the evolution of invertebrate drift periodicity: evidence from neotropical streams. Ecology 73: 438-448.Google Scholar
  12. Forward R. B., 1985. Behavioral responses of larvae of the crab Rhithropanopeus harrisii (Brachyura: Xanthidae) during diel vertical migration. Mar. Biol. 90: 9-18.Google Scholar
  13. Glozier, N. E. & J. M. Culp, 1989. Experimental investigations of diel vertical movements by lotic mayflies over substrate surfaces. Freshwat. Biol. 21: 253-260.Google Scholar
  14. Grace, (now Schloss) A. L., 1990. Light control of the diel activity patterns of mayfly nymphs. Master's Thesis. University of New Hampshire, Durham.Google Scholar
  15. Haney, J. F., T. R. Beaulieu, R. P. Berry, D. P. Mason, C. R. Miner, E. S. McLean, K. L Price, M. A. Trout, R. A. Vinton & S. J. Weiss, 1983. Light intensity and relative light change as factors regulating stream drift. Arch. Hydrobiol. 97: 73-88.Google Scholar
  16. Haney, J. F., A. Craggy, K. Kimball & F. Weeks, 1990. Light control of evening vertical migrations by Chaoborus punctipennis larvae. Limnol. Oceanogr. 35: 1068-1078.Google Scholar
  17. Heise, B., 1992. Sensitivity of mayfly nymphs to red light: implications for behavioral ecology. Freshwat. Biol. 28: 331-336.Google Scholar
  18. Holt, C. S. & T. F. Waters, 1967. Effect of light intensity on the drift of stream invertebrates. Ecology 48: 225-234.Google Scholar
  19. Kavanau, J. L. & C. R. Peters, 1976. Activity of nocturnal primates: Influences of twilight Zeitgebers and weather. Science 191: 83-86.Google Scholar
  20. Kohler, S. L. 1984. Search mechanisms of a stream grazer in patchy environments: the role of food abundance. Oecologia (Berlin) 62: 209-218.Google Scholar
  21. McIntosh, A. R. & C. R. Townsend, 1994. Interpopulation variation in mayfly antipredator tactics: differential effects of contrasting predatory fish. Ecology 75: 2078-2090.Google Scholar
  22. Müller, K., 1966. Die tagesperiodik von Fliesswasserorganismen. Z Morph. Oekologische Tiere 56: 93-142.Google Scholar
  23. Peckarsky, B. L., S. D. Cooper & A. R. McIntosh, 1997. Extrapolating from individual behavior to populations and communities in streams. J. n. am. benthol. Soc. 16: 375-390.Google Scholar
  24. Rasband, W. S. & D. S. Bright, 1996. NIH Image, A public domain image-processing program for the Macintosh, V. 1.61, http://rsb.info.nih.gov/NIH-image/Defa ult.html.Google Scholar
  25. Ringelberg, J., 1964. The positively phototactive reaction of Daphnia magna Straus. Neth. J. Sea Res. 2: 319-406.Google Scholar
  26. Ringelberg, J., 1991. A mechanism of predator-mediated induction of diel vertical migration in Daphnia hyalina. J. Plankton Res. 13: 83-89.Google Scholar
  27. Ringelberg, J., 1999. The photobehavior ofDaphnia spp. as a model to explain diel vertical migration in zooplankton. Biol. Rev. 74: 397-423.Google Scholar
  28. Ringelberg, J., B. J. G. Flik, D. Lindenaar & K. Royackers, 1991. Diel vertical migration of Daphnia hyalina (sensu latiori) in Lake Maarsseveen: Part 1. Aspects of seasonal and daily timing. Arch. Hydrobiol. 121: 129-145.Google Scholar
  29. Scrimgeour, G. J., J. M. Culp & K. J. Cash, 1994. Anti-predator responses of mayfly larvae to conspecific and predator stimuli. J. n. am. benthol. Soc. 13: 299-309.Google Scholar
  30. Spaak, P. & J. Ringelberg, 1997. Differential behavior and shifts in genotype composition during the beginning of a seasonal period of diel vertical migration. Hydrobiologia 360: 177-185Google Scholar
  31. Stearns, D. E. & R. B. Forward, 1984. Copepod photobehavior in a simulated natural light environment and its relation to nocturnal vertical migration. Mar. Biol. 82: 91-100.Google Scholar
  32. Swift, M. C. & R. B. Forward, 1988. Absolute light intensity vs. rate of relative change in light intensity: the role of light in the vertical migration of Chaoborus punctipennis larvae. Bull. Mar. Sci. 43: 604-619.Google Scholar
  33. Van Gool, E. & J. Ringelberg, 1997. The effect of accelerations in light increase on the phototactic downward swimming of Daphnia and the relevance to diel vertical migration. J. Plankton Res. 19: 2041-2050.Google Scholar
  34. Waters, T. F., 1972. The drift of stream insects. Ann. Rev. Ent. 17: 253-272.Google Scholar
  35. Wetzel, R. G., 1983. Limnology, 2nd edn. CBS College Publ., New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Annette L. Schloss
    • 1
  1. 1.Department of ZoologyUniversity of New HampshireDurhamU.S.A
  2. 2.Institute for the Study of Earth, Oceans and SpaceComplex Systems Research CenterDurhamU.S.A.

Personalised recommendations