Mathematical Physics, Analysis and Geometry

, Volume 5, Issue 3, pp 201–241 | Cite as

Classification of Gauge Orbit Types for SU(n)-Gauge Theories

  • G. Rudolph
  • M. Schmidt
  • I. P. Volobuev


A method for determining the orbit types of the action of the group of gauge transformations on the space of connections for gauge theories with gauge group SU(n) in spacetime dimension d≤4 is presented. The method is based on the one-to-one correspondence between orbit types and holonomy-induced reductions of the underlying principal SU(n)-bundle. It is shown that the orbit types are labelled by certain cohomology elements of spacetime satisfying two relations. Thus, for every principal SU(n)-bundle the corresponding stratification of the gauge orbit space can be explicitly determined. As an application, a criterion characterizing kinematical nodes for physical states in Yang–Mills theory with the Chern–Simons term proposed by Asorey et al. is discussed.

classification gauge orbit space nongeneric strata orbit types quantum nodes stratification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbati, M. C., Cirelli, R., Manià, A. and Michor, P.: The Lie group of automorphisms of a principal bundle, J. Geom. Phys. 6(2) (1989), 215–235.Google Scholar
  2. 2.
    Abbati, M. C., Cirelli, R. and Manià, A.: The orbit space of the action of gauge transformation group on connections, J. Geom. Phys. 6(4) (1989), 537–557.Google Scholar
  3. 3.
    Asorey, M., Falceto, F., López, J. L. and Luzón, G.: Nodes, monopoles, and confinement in 2 + 1-dimensional gauge theories, Phys. Lett. B 345 (1995), 125–130.Google Scholar
  4. 4.
    Asorey, M.: Maximal non-Abelian gauges and topology of the gauge orbit space, Nuclear Phys. B 551 (1999), 399–424.Google Scholar
  5. 5.
    Avis, S. J. and Isham, C. J.: Quantum field theory and fibre bundles in a general space-time, In: M. Levy and S. Deser (eds), Recent Developments in Gravitation (Cargèse 1978), Plenum Press, New York, 1979, pp. 347–401.Google Scholar
  6. 6.
    Borel, A.: Topics in the Homology Theory of Fibre Bundles, Lecture Notes in Math. 36, Springer, New York, 1967.Google Scholar
  7. 7.
    Bredon, G. E.: Introduction to Compact Transformation Groups, Academic Press, New York, 1972.Google Scholar
  8. 8.
    Bredon, G. E.: Topology and Geometry, Springer, New York, 1993.Google Scholar
  9. 9.
    Dodson, C. T. J. and Parker, P. E.: A User's Guide to Algebraic Topology, Kluwer Acad. Publ., Dordrecht, 1997.Google Scholar
  10. 10.
    Emmrich, C. and Römer, H.: Orbifolds as configuration spaces of systems with gauge symmetries, Comm. Math. Phys. 129 (1990), 69–94.Google Scholar
  11. 11.
    Fomenko, A. T., Fuchs, D. B. and Gutenmacher, V. L.: Homotopic Topology, Akadémiai Kiadó, Budapest, 1986.Google Scholar
  12. 12.
    Ford, C., Tok, T. and Wipf, A.: Abelian projection on the torus for general gauge groups, Nuclear Phys. B 548 (1999), 585–612.Google Scholar
  13. 13.
    Ford, C., Tok, T. and Wipf, A.: SU(N)-gauge theories in Polyakov gauge on the torus, Phys. Lett. B 456 (1999), 155–161.Google Scholar
  14. 14.
    Fuchs, J., Schmidt, M. G. and Schweigert, C.: On the configuration space of gauge theories, Nuclear Phys. B 426 (1994), 107–128.Google Scholar
  15. 15.
    Heil, A., Kersch, A., Papadopoulos, N. A., Reifenhäuser, B. and Scheck, F.: Structure of the space of reducible connections for Yang-Mills theories, J. Geom. Phys. 7(4) (1990), 489–505.Google Scholar
  16. 16.
    Heil, A., Kersch, A., Papadopoulos, N. A., Reifenhäuser, B. and Scheck, F.: Anomalies from nonfree action of the gauge group, Ann. Phys. 200 (1990), 206–215.Google Scholar
  17. 17.
    Hirzebruch, F.: Topological Methods in Algebraic Geometry, Springer, New York, 1978.Google Scholar
  18. 18.
    Howe, R.: θ-series and invariant theory, In: Automorphic Forms, Representations, and Lfunctions, Proc. Sympos. Pure Math. 33, part 1, Amer. Math. Soc., Providence, 1979, pp. 275–285.Google Scholar
  19. 19.
    Husemoller, D.: Fibre Bundles, McGraw-Hill, New York, 1966; Springer, New York, 1994.Google Scholar
  20. 20.
    Isham, C. J.: Space-time topology and spontaneous symmetry breaking, J. Phys. A 14 (1981), 2943–2956.Google Scholar
  21. 21.
    Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Vol. I, Wiley-Interscience, New York, 1963.Google Scholar
  22. 22.
    Kondracki, W. and Rogulski, J.: On the notion of stratification, Demonstratio Math. 19 (1986), 229–236.Google Scholar
  23. 23.
    Kondracki, W. and Rogulski, J.: On the stratification of the orbit space for the action of automorphisms on connections, Dissertationes Math. 250, Panstwowe Wydawnictwo Naukowe, Warsaw, 1986.Google Scholar
  24. 24.
    Kondracki, W. and Sadowski, P.: Geometric structure on the orbit space of gauge connections, J. Geom. Phys. 3(3) (1986), 421–433.Google Scholar
  25. 25.
    Massey, W. S.: A Basic Course in Algebraic Topology, Springer, New York, 1991.Google Scholar
  26. 26.
    Mitter, P. K. and Viallet, C.-M.: On the bundle of connections and the gauge orbit manifold in Yang-Mills theory, Comm. Math. Phys. 79 (1981), 457–472.Google Scholar
  27. 27.
    Moeglin, C., Vignéras, M.-F. and Waldspurger, J.-L.: Correspondances de Howe sur un corps p-adique, Lecture Notes in Math. 1291, Springer, New York, 1987.Google Scholar
  28. 28.
    Palais, R. S.: Foundations of Global Nonlinear Analysis, Benjamin, New York, 1968.Google Scholar
  29. 29.
    Przebinda, T.: On Howe's duality theorem, J. Funct. Anal. 81 (1988), 160–183.Google Scholar
  30. 30.
    Rubenthaler, H.: Les paires duales dans les algèbres de Lie réductives, Astérisque 219 (1994).Google Scholar
  31. 31.
    Schmidt, M.: Classification and partial ordering of reductive Howe dual pairs of classical Lie groups, J. Geom. Phys. 29 (1999), 283–318.Google Scholar
  32. 32.
    Singer, I. M.: Some remarks on the Gribov ambiguity, Comm. Math. Phys. 60 (1978), 7–12.Google Scholar
  33. 33.
    Skolem, T.: Diophantische Gleichungen, Springer, Berlin, 1938.Google Scholar
  34. 34.
    Steenrod, N.: The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, NJ, 1951.Google Scholar
  35. 35.
    Whitehead, G. W.: Elements of Homotopy Theory, Grad. Texts in Math. 61, Springer, New York, 1978.Google Scholar
  36. 36.
    Woodward, L. M.: The classification of principal PU(n)-bundles over a 4-complex, J. London Math. Soc. (2) 25 (1982), 513–524.Google Scholar
  37. 37.
    Rudolph, G., Schmidt, M. and Volobuev, I. P.: Partial ordering of gauge orbit types for SU(n)-gauge theories, J. Geom. Phys. 42 (2002), 106–138.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • G. Rudolph
    • 1
  • M. Schmidt
    • 1
  • I. P. Volobuev
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of LeipzigLeipzigGermany
  2. 2.Nuclear Physics InstituteMoscow State UniversityMoscowRussia

Personalised recommendations