Skip to main content
Log in

Gastric Acid Secretion in the Dog: A Mechanism-Based Pharmacodynamic Model for Histamine Stimulation and Irreversible Inhibition by Omeprazole

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

A mechanism-based pharmacodynamic model was used to describe the inhibitory effect by omeprazole on gastric acid secretion measured after histamine stimulation in the dog. The model identifies parameters that are related to the physiological system, the histamine stimulation, and the irreversible effect of omeprazole on the H+, K+-ATPase enzyme. Four different experiments with omeprazole (Exps. 1–4) and two placebo experiments were performed in each of the four Heidenhain pouch dogs used. For placebo and experiments 1–3, saline or omeprazole 0.81 μmol/kg was infused during 3 hr with measurements of histamine-stimulated gastric acid secretion in two periods of 3.5–6.5 hr, one period starting just before the omeprazole infusion and a second later period up to 29 hr post infusion. In experiment 4, 0.18 μmol/kg of omeprazole was infused for 22.5 min and gastric juice was collected for 5 hr post infusion. The response data was well described by the model. Similar parameter estimates were obtained by three different analysis methods; naïve pooling, two-stage method and nonlinear mixed effects modeling. The elimination rate constant for the H+, K+-ATPase enzyme, k out, was estimated to be 0.040 hr-1, corresponding to a half-life of about 17 hr. This rate constant determines the duration of omeprazole inhibition after long-term exposure. For short-term omeprazole exposure the duration is determined by the rate constant for transfer of enzymes from active to resting state, estimated to be 1.88 hr-1. The second-order rate constant for histamine stimulation was estimated to be 0.064 hr-1 per histamine concentration unit and the maximum acid secretion was estimated to be 5.0 mmol H+/30 min. The second-order rate constant for the irreversible binding of omeprazole to H+, K+-ATPase, k ome, was estimated to be 2.39 L/μmol ⋅ hr. By modeling the histamine-induced baseline response simultaneously with active treatment, predictions of the response are possible not only following different dosing regimens of omeprazole, but also following different degrees of histamine stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Wallmark, B. M. Jaresten, H. Larsson, B. Ryberg, A. BrÄndström, and E. Fellenius. Differentiation among inhibitory actions of omeprazole, cimetidine, and SCN¯ on gastric acid secretion. Am. J. Physiol. 245:G64–71 (1983).

    PubMed  Google Scholar 

  2. P. Lorentzon, R. Jackson, B. Wallmark, and G. Sachs. Inhibition of (H++K+)-ATPase by omeprazole in isolated vesicles requires proton transport. Biochim. Biophys. Acta 897:41–51 (1987).

    PubMed  Google Scholar 

  3. D. J. Keeling, C. Fallowfield, and A. H. Underwood. The specificity of omeprazole as an (H+-K+)-ATPase inhibitor depends upon the means of its activation. Biochem. Pharmacol. 36:339–344 (1987).

    PubMed  Google Scholar 

  4. A. J. Pope and M. E. Parsons. Reversible inhibitors of the gastric (H+/K+)-transporting ATPase: a new class of antisecretory agents. Trends Pharmacol. Sci. 14:323–325 (1993).

    PubMed  Google Scholar 

  5. S. J. Hersey and G. Sachs. Gastric acid secretion. Physiol. Rev. 75: 155–189 (1995).

    PubMed  Google Scholar 

  6. A. Äbelö, U. G. Eriksson, M. O. Karlsson, H. Larsson, and J. Gabrielsson. A turnover model of irreversible inhibition of gastric acid secretion by omeprazole in the dog. J. Pharmacol. Exp. Ther. 295:662–669 (2000).

    PubMed  Google Scholar 

  7. H. Larsson, M. L. Berglund, and E. Carlsson. Omeprazole-the relation between plasma levels and gastric antisecretory effect in the dog. Abstract, Acta Physiol. Scand. Suppl.508:66 (1982).

    Google Scholar 

  8. H. Larsson, E. Carlsson, U. Junggren, L. Olbe, S.E. Sjöstränd, I. Skånberg, and G. Sundell. Inhibition of gastric acid secretion by omeprazole in the dog and rat. Gastroenterol. 85:900–907 (1983).

    Google Scholar 

  9. P. O. Lagerström and B. A. Persson. Determination of omeprazole and metabolites in plasma and urine by liquid chromatography. Chromatogr. 309: 347–356 (1984).

    Google Scholar 

  10. B. N. Halpern, T. Neveu, and C. W. M. Wilson. The distribution and fate of radioactive histamine in the rat. J. Physiol. 147:437–449 (1959).

    PubMed  Google Scholar 

  11. S. L. Beal and L. B. Sheiner. NONMEM Users Guide, NONMEM Project Group, University of California, San Francisco, 1992.

    Google Scholar 

  12. E. N. Jonsson and M. O. Karlsson. Xpose-an S-Plus based population pharmacokinetic/ pharamacodynamic model building aid for NONMEM. Comput. Methods Programs Biomed. 58(1):51–64 (1999).

    PubMed  Google Scholar 

  13. D. R. Scott, H. F. Helander, S. J. Hersey, and G. Sachs. The site of acid secretion in the mammalian parietal cell. Biochim. Biophys. Acta 1146:73–80 (1993).

    PubMed  Google Scholar 

  14. J. De Graef and M. C. Woussen-Colle. Influence of the stimulation state of the parietal cells on the inhibitory effect of omeprazole on gastric acid secretion in dogs. Gastroenterol. 91:333–337 (1986).

    Google Scholar 

  15. K. Gedda, D. Scott, M. Besancon, and G. Sachs. The half life of the H,K ATPase of gastric mucosa. Gastroenterol. 109:1134–1141 (1995).

    Google Scholar 

  16. G. Sachs, J. M. Shin, C. Briving, B. Wallmark, and S. Hersey. The pharmacology of the gastric acid pump: The H+, K+. Annu. Rev. Pharmacol. Toxicol. 35:277–305 (1995).

    PubMed  Google Scholar 

  17. T. Lind, C. Cederberg, G. Ekenved, U. Haglund, and L. Olbe. Effect of omeprazole-a gastric proton pump inhibitor-on pentagastrin stimulated acid secretion in man. Gut 24:270–276 (1983).

    PubMed  Google Scholar 

  18. P. Olsson Gisleskog, D. Hermann, M. Hammarlund-Udenaes, and M. O. Karlsson. A model for the turnover of dihydrotestosterone in the presence of the irreversible 5α reductase inhibitors GI198745 and finasteride. Clin. Pharmacol. Ther. 64:636–647 (1998).

    PubMed  Google Scholar 

  19. M. Hassan, U. S. H. Svensson, P. Ljungman, B. Bjö rkstrand, H. Olsson, M. Bielenstein, M. Abdel-Rehim, C. Nilsson, M. Johansson, and M. O. Karlsson. A mechanism-based pharmacokinetic-enzyme model for cyclophosphamide autoinduction in breast cancer patients. Br. J. Clin. Pharmacol. 48:669–677 (1999).

    PubMed  Google Scholar 

  20. V. I. Avramis, S. Sencer, A. P. Periclou, H. Sather, B. C. Bostrom, L. J. Cohen, A. G. Ettinger, L. J. Ettinger, J. Franklin, P. S. Gaynon, J. M. Hilden, B. Lange, F. Majlessipour, P. Mathew, M. Needle, J. Neglia, G. Reaman, and J. S. Holcenberg. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children's Cancer Group study. Blood 99:1986–1994 (2002).

    PubMed  Google Scholar 

  21. M. Katashima, K. Yamamoto, Y. Tokuma, T. Hata, Y. Sawada, and T. Iga. Comparative pharmacokinetic/pharmacodynamic study of proton pump inhibitors, omeprazole, lansoprazole and pantoprazole, in humans. Eur. J. Drug. Metab. Pharmacokinet. 23:19–26 (1998).

    PubMed  Google Scholar 

  22. T. Rydberg, A. Jonsson, M. O. Karlsson, and A. Melander. Concentration-effect relations of glibenclamide and its active metabolites in man: modelling of pharmacokinetics and pharmacodynamics. Br. J. Clin. Pharmacol. 43(4):373–378 (1997).

    PubMed  Google Scholar 

  23. E. N. Jonsson, J. R. Wade, and M. O. Karlsson. Nonlinearity detection: advantages of nonlinear mixed effects modelling. AAPS Pharmsci. 2(3) article 32 (2000).

    Google Scholar 

  24. B. K. Kataria, S. A. Ved, H. F. Nicodemus, G. R. Hoy, D. Lea, M. Y. Dubois, J. W. Mandema, and S. L. Shafer. The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology. 80(1):104–122 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Äbelö.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Äbelö, A., Holstein, B., Eriksson, U.G. et al. Gastric Acid Secretion in the Dog: A Mechanism-Based Pharmacodynamic Model for Histamine Stimulation and Irreversible Inhibition by Omeprazole. J Pharmacokinet Pharmacodyn 29, 365–382 (2002). https://doi.org/10.1023/A:1020905224001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020905224001

Navigation