Skip to main content
Log in

Fabrication of Chromophoric Xerogels by Synergistic Combination of Nucleophilic Aromatic Substitution and the Sol-Gel Process

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The nucleophilic substitution of fluorine of aromatic compounds with n-aminoalkyl trialkoxysilanes and consecutive sol-gel process have been used for the fabrication of various chromophoric sol-gel materials. The displacement of the fluoro substituent of an activated aromatic molecule occurs by a primary or secondary amino group of (CH3O)3Si-(CH2)3-NHR [R- = H-; CH3-, (CH3O)3Si-(CH2)3-] in tetraalkoxysilane or alcohol as solvent and the sol-gel process can be carried in the same vessel. The HF formed is trapped by a tertiary amine and simultaneously serves as the catalyst for the sol-gel process. Various aromatic compounds have been checked for this purpose: 1-(4-fluorophenyl)-2-nitroethylene, 1-(4-fluorophenyl)-2,2-dicyanoethylene, 4-fluorobenzonitrile, 4-fluoronitrobenzene, 4,4′-difluorobenzophenone, 4,4′-difluorobenzil, 7,7′-difluorodibenzylideneacetone, tetrafluoro-p-benzoquinone, and 1,5-difluoro-2,4-dinitrobenzene. Mono and disubstitution has been studied by UV/Vis- and solid state NMR spectroscopy of the xerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, New York, 1989).

    Google Scholar 

  2. C.K. Jorgensen and R. Reisfeld, Optical and Electronic Phenomena in Sol.-Gel. Glasses and Modern Application (Springer, Berlin, 1996).

    Google Scholar 

  3. R. Gvishi, U. Narang, G. Ruland, D. Kumar, and P. Prasad, Appl. Organomet. Chem. 11, 107 (1997).

    Google Scholar 

  4. D. Avnir, L.C. Klein, D. Levy, U. Schubert, and A.B. Wojeik, in The Chemistry of Organosilicon Compounds–Part 2, edited by Y. Apeloig and Z. Rapporport (Wiley & Sons, Chichester, 1997), Ch. 48.

    Google Scholar 

  5. B. Lebean, J.Z. Brasselet, and Z.C. Sanchez, Chem. Mater. 9, 1017 (1997).

    Google Scholar 

  6. F. Del Monte and D. Levy, J. Sol.-Gel Sci. Technol. 8, 585 (1997).

    Google Scholar 

  7. Ll. Hu and Z.H. Jiang, SPIE Sol.-Gel. Opt. IV 3136, 94 (1997).

    Google Scholar 

  8. E.J.A. Pope, SPIE Sol.-Gel. Opt. III 2288, 410 (1994).

    Google Scholar 

  9. M.D. Rahn, T.A. King, C.A. Capozzi, and A.B. Seddon, SPIE Sol.-Gel. Opt. III 2288, 410 (1994).

    Google Scholar 

  10. C. Sanchez and F. Ribot, New J. Chem. 18, 1007 (1994).

    Google Scholar 

  11. J.D. MacKenzie, Sol.-Gel Optics III, Proc. SPIE 1994, p. 2288.

  12. M. Anva, A. Dubots, P. Georges, A. Brun, F. Chaput, and A. Ranger, in Proc. SPTF-Int. Soc. Opt. Eng. (Sol.-Gel Optics III) 2238, 298 (1994).

    Google Scholar 

  13. S.C. Klein, Sol.-Gel Optics, Processing and Applications, (Kluwer Academic Press, Boston, 1994).

    Google Scholar 

  14. S. Pandey, G.A. Baker, M.A. Kane, N.J. Bonzagni, and F.V. Bright, Chem. Mater. 12, 3547 (2000).

    Google Scholar 

  15. J. Sauer and R. Huisgen, Angew. Chem. 72, 294 (1960).

    Google Scholar 

  16. E. Buncel, M.R. Crampton, M.J. Strass, and F. Terier, Electron Deficient Aromatic Heteroaramatic–Base Interaction (Elsevier, Amsterdam, 1984).

    Google Scholar 

  17. M.R. Campton, in Organic Reaction Mechanism 1996, edited by A.C. Knipe and W.E. Watts (John Wiley & Sons, 1999), p. 147, 162.

  18. A.J. Belfield, G.R. Brown, and A.J. Foubister, Tetrahedron 55, 11399 (1999).

    Google Scholar 

  19. K. Neimann and R. Neumann, Chem. Commun. 487 (2001).

  20. A.G.S. Prado and C. Airoldi, J. Coll. Interf. Sci. 236, 161 (2001).

    Google Scholar 

  21. B. Boury and R.J.P. Corriu, Adv. Mat. 12, 989 (2000).

    Google Scholar 

  22. R.J.P. Corriu, Angew. Chem 112, 1433 (2000).

    Google Scholar 

  23. S. Spange, A. Seifert, H. Müller, S. Hesse, and C. Jäger, Angew. Chem. 114, 1805 (2002).

    Google Scholar 

  24. N. Marcotte and S. Fery-Forgues, J. Chem. Soc., Perkin. Trans. 2, 1711 (2000).

    Google Scholar 

  25. H. Annoura, K. Nakanishi, T. Toba, N. Takemoto, S. Imajo, A. Miyajima, Y. Tamura-Horikawa, and S. Tamura, J. Med. Chem. 43, 3372 (2000).

    Google Scholar 

  26. C. Reichardt, Chem. Rev. 94, 2319 (1994).

    Google Scholar 

  27. S. Spange, A. Reuter, and D. Lubda, Langmuir 15, 2103 (1999).

    Google Scholar 

  28. S. Spange, Y. Zimmermann, and A. Gräser, Chem. Mat. 11, 3245 (1999).

    Google Scholar 

  29. S. Spange and D. Keutel, Liebigs Ann. Chem. 423 (1992).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, A., Spange, S., Müller, H. et al. Fabrication of Chromophoric Xerogels by Synergistic Combination of Nucleophilic Aromatic Substitution and the Sol-Gel Process. Journal of Sol-Gel Science and Technology 26, 77–81 (2003). https://doi.org/10.1023/A:1020789318803

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020789318803

Navigation