Journal of Pharmacokinetics and Biopharmaceutics

, Volume 26, Issue 6, pp 717–733 | Cite as

Implications for Clinical Pharmacodynamic Studies of the Statistical Characterization of an In Vitro Antiproliferation Assay

  • Laurence M. Levasseur
  • Hélène Faessel
  • Harry K. Slocum
  • William R. Greco


Modeling of nonlinear pharmacodynamic (PD) relationships necessitates the utilization of a weighting function in order to compensate for the heteroscedasticity. The structure of the variance was studied for concentration–effect data generated in an in vitro 96-well plate cell growth inhibition assay, where data are numerous (480 data points per experiment) and replication is easy. From the five candidate models that were considered, the power function\({\text{S}}_{\text{Y}}^{\text{2}} = \phi _2 \overline {\text{Y}} ^{\phi 3}\), where\(\overline {\text{Y}}\)is the sample mean and\({\text{S}}_{\text{Y}}^{\text{2}}\)is the sample variance, was shown to be the most appropriate to describe the nonuniformity of the variance along the range of measured effect for 253 sets of\(\left( {\overline {\text{Y}} ;{\text{s}}_{\text{Y}}^{\text{2}} } \right)\)data. The Hill model was fit to the concentration–effect data with weighted nonlinear regression, where the weights were equal to the reciprocal of the predicted variance. The examination of the distribution of the 253 sets of parameters of the PD model showed that IC50was lognormally distributed whereas the distribution of γ was normal. The characterization of the appropriate variance function and concentration–effect function in a simple in vitro experimental setting with a large number of experiments, with each experiment including a large number of data points, will be useful for guiding similar in vitro concentration–effect studies where data are plentiful and for guiding PD modeling in complex clinical settings in which extensive data for model characterization is impossible to obtain.

sulforhodamine B power model weighting function Hill model nonlinear regression parameter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Levasseur, H. Faessel, H. K. Slocum, and W. R. Greco. Precision and pattern in 96-well plate cell growth experiments. Proc. Biopharm. Sect. Am. Statist. Assoc. pp. 227–232 (1995).Google Scholar
  2. 2.
    P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82:1107–1112 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    K. Crickard, M. J. Niedbala, U. Crickard, M. Yoonessi, A. A. Sandberg, K. Okuyama, R. J. Bernacki, and S. K. Satchidanand. Characterization of human ovarian and endometrial carcinoma cell lines established on extracellular matrix. Gynecol. Oncol. 32:163–173 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    A. M. Rogan, T. C. Hamilton, R. C. Young, R. W. Klecker, Jr., and R. F. Ozols. Reversal of adriamycin resistance by verapamil in human ovarian cancer. Science 224:994–996 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    M. A. Alaoui Jamali, M. B. Yin, A. Mazzoni, I. Bankusli, and Y. M. Rustum. Relationship between cytotoxicity, drug accumulation, DNA damage and repair of human ovarian cancer cells treated with doxorubicin: Modulation by the tiapamil analog RO11-2933. Cancer Chemother. Pharmacol. 25:77–83 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Z. D'Argenio and A. Schumitzky. ADAPT II User's Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software, Biomedical Simulations Resource, Los Angeles, 1997.Google Scholar
  7. 7.
    J. P. Parsons, L. M. Levasseur, H. Faessel, H. K. Slocum, L. A. Khinkis, and W. R. Greco. Computer software for assessing in vitro anticancer multiple-agent combined-action: The search for synergy. Proc. Ann. Meet. Am. Assoc. Cancer Res. 38:A2131 (1997).Google Scholar
  8. 8.
    M. Davidian and R. J. Carroll. Variance function estimation. J. Am. Statist. Assoc. 82:1079–1091 (1987).CrossRefGoogle Scholar
  9. 9.
    D. J. Finney and P. Phillips. The form and estimation of a variance function, with particular reference to radioimmunoassay. Appl. Statist. 26:312–320 (1977).CrossRefGoogle Scholar
  10. 10.
    B. Mannervik, I. Jakobson, and M. Warholm. Error structure as a function of substrate and inhibitor concentration in enzyme kinetic experiments. Biochem. J. 235:797–804 (1986).PubMedCentralPubMedGoogle Scholar
  11. 11.
    S. L. Beal and L. B. Sheiner. Heteroscedastic nonlinear regression. Technometrics 30:327–338 (1988).CrossRefGoogle Scholar
  12. 12.
    D. Rodbard, R. H. Lenox, H. L. Wray, and D. Ramseth. Statistical characterization of the random errors in the radioimmunoassay dose-response variable. Clin. Chem. 22:350–358 (1976).PubMedGoogle Scholar
  13. 13.
    N. H. Holford and L. B. Sheiner. Pharmacokinetic and pharmacodynamic modeling in vivo. CRC Crit. Rev. Bioeng. 5:273–322 (1981).Google Scholar
  14. 14.
    A. V. Hill. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40:iv–vii (1910).Google Scholar
  15. 15.
    L. F. Shackell, W. Williamson, M. M. Deitchman, G. M. Katzman, and B. S. Kleinman. The relation of dosage to effect. J. Pharmacol. 24:53 (1924).Google Scholar
  16. 16.
    N. H. Holford and L. B. Sheiner. Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin. Pharmacokin. 6:429–453 (1981).CrossRefGoogle Scholar
  17. 17.
    T. A. J. Ryan and B. L. Joiner. Normal probability plots and tests for normality. Technical Report, Statistics Department, Pennsylvania State University, 1976.Google Scholar
  18. 18.
    L. V. Rubinstein, R. H. Shoemaker, K. D. Paull, R. M. Simon, S. Tosini, P. Skehan, D. A. Scudiero, A. Monks, and M. R. Boyd. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl. Cancer Inst. 82:1113–1118 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    B. T. Hill and R. D. Whelan. Assessments of the sensitivities of cultured human neuroblastoma cells to anti-tumour drugs. Pediat. Res. 15:1117–1122 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    L. M. Levasseur, W. R. Greco, Y. M. Rustum, and H. K. Slocum. Combined-action of paclitaxel and cisplatin against wild-type and resistant human ovarian carcinoma cells. Cancer Chemother. Pharmacol. 40:495–505 (1997).PubMedCrossRefGoogle Scholar
  21. 21.
    H. M. Faessel, H. K. Slocum, R. C. Jackson, T. J. Boritzki, Y. M. Rustum, M. G. Nair, and W. R. Greco. Super in vitro synergy between inhibitors of dihydrofolate reductase and inhibitors of other folate-requiring enzymes: the critical role of polyglutamylation. Cancer Res. 58:3036–3050 (1998).PubMedGoogle Scholar
  22. 22.
    L. M. Levasseur, H. K. Slocum, Y. M. Rustum, and W. R. Greco. Modeling of the time-dependency of in vitro drug cytotoxicity and resistance. Cancer Res. 58:5749–5761 (1998).PubMedGoogle Scholar
  23. 23.
    D. Rodbard and G. R. Frazier. Statistical analysis of radioligand assay data. J. Immunol. Meth. 37:3–22 (1975).Google Scholar
  24. 24.
    A. Cornish-Bowden and L. Endrenyi. Fitting of enzyme kinetic data without prior knowledge of weights. Biochem. J. 193:1005–1008 (1981).PubMedCentralPubMedGoogle Scholar
  25. 25.
    H. K. Slocum, G. H. Heppner, and Y. M. Rustum. Cellular heterogeneity of human tumors: implications for understanding and treating cancer. Biol. Respon. Cancer 4:183–248 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Laurence M. Levasseur
    • 1
    • 2
  • Hélène Faessel
    • 1
    • 2
  • Harry K. Slocum
    • 2
  • William R. Greco
    • 1
    • 2
  1. 1.Department of BiomathematicsRoswell Park Cancer InstituteBuffalo
  2. 2.Department of Experimental TherapeuticsRoswell Park Cancer InstituteBuffalo

Personalised recommendations