Advertisement

Journal of Pharmacokinetics and Biopharmaceutics

, Volume 26, Issue 6, pp 619–648 | Cite as

Dose-Dependence and Repeated-Dose Studies for Receptor/Gene-Mediated Pharmacodynamics of Methylprednisolone on Glucocorticoid Receptor Down-Regulation and Tyrosine Aminotransferase Induction in Rat Liver

  • Yu-Nien Sun
  • Debra C. DuBois
  • Richard R. Almon
  • Nancy A. Pyszczynski
  • William J. Jusko
Article

Abstract

Dose-dependent and repeated-dose effects of methylprednisolone (MPL) on down-regulation of glucocorticoid receptor messenger RNA (GR mRNA) and GR density, as well as tyrosine aminotransferase (TAT) mRNA and TAT induction by receptor/gene-mediated mechanisms in rat liver were examined. A previously developed pharmacokinetic/pharmacodynamic (PK/PD) model was used to design these studies which sought to challenge the model. Three groups of male adrenalectomized Wistar rats received MPL by iv injection: low-dose (10 mg/kg at Time 0), high-dose (50 mg/kg at Time 0), and dual-dose (50 mg/kg at Time 0 and 24 hr). Plasma concentrations of MPL, and hepatic content of free GR, GR mRNA, TAT mRNA, and TAT activity were determined. The P-Pharm program was applied for population analysis of MPL PK revealing low interindividual variation in CL and Vc values (3–14%). Two indirect response models were applied to test two competing hypotheses for GR mRNA dynamics. Indirect Pharmacodynamic Response Model I (Model A) where the complex in the nucleus decreases the transcription rate of GR mRNA better described GR mRNA/GR down-regulation. Levels of TAT mRNA began to increase at 1–2 hr, reached a maximum at 5–6 hr, and declined to the baseline at 12–14 hr after MPL dosing. The induction of TAT activity followed a similar pattern with a delay of about 1–2 hr. The low-dose group had 50–60% of the TAT mRNA and TAT induction compared to the high-dose group. Since the GR density returned to about 70% of the baseline level before the second 50 mg/kg dose at 24 hr, tolerance was found for TAT mRNA/TAT induction where only 50–60% of the initial responses were produced. Our fourth-generation model describes the dose dependence and tolerance effects of TAT mRNA/TAT induction by MPL involving multiple-step signal transduction controlled by the steroid regimen, free GR density, and GR occupancy. This model may provide the foundation for studying other induced proteins or enzymes mediated by the similar receptor/nuclear events.

methylprednisolone pharmacokinetics pharmacodynamics indirect pharmacodynamic response models glucocorticoid receptor Northern hybridization mRNA down-regulation tyrosine aminotransferase dose dependence tolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. C. Guyton. The adrenocortical hormones. In Textbook of Medical Physiology, W. B. Saunders, 1986, pp. 909–922.Google Scholar
  2. 2.
    B. P. Schimmer and K. L. Parker. Chapter 59: Adrenocorticotropic hormones; adrenocortical steroids and their synthetic analogs; inhibitors of the synthesis and actions of adrenocortical hormones. In J. G. Hardman, L. E. Limbird, P. B. Molinoff, R. W. Ruddon, and A. G. Gilman (eds.), Goodman & Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, 1996, pp. 1459–1485.Google Scholar
  3. 3.
    D. T. Boumpas, G. P. Chrousos, R. L. Wilder, T. R. Cupps, and J. E. Balow. Glucocorticoid therapy for immuno-mediated diseases: Basic and clinical correlates. Ann. Intern. Med. 119:1198–1208 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    S. L. Swartz and R. G. Dluhy. Corticosteroids: Clinical pharmacology and therapeutic use. Drugs 16:238–255 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    K. H. Lew and W. J. Jusko. Pharmacodynamic modeling for cortisol suppression from fluocortolone. Eur. J. Clin. Pharmacol. 45:581–583 (1993).PubMedCrossRefGoogle Scholar
  6. 6.
    L. E. Fisher, E. A. Ludwig, and W. J. Jusko. Pharmacoimmunodynamics of methylprednisolone: Trafficking of helper-T lymphocytes. J. Pharmacokin. Biopharm. 20:319–331 (1992).CrossRefGoogle Scholar
  7. 7.
    R. I. Scheinman, P. C. Cogswell, A. K. Lofquist, and A. S. Baldwin Jr., Roles of transcriptional activation of IκBα in mediation of immunosuppression by glucocorticoids. Science 270:283–286 (1995).PubMedCrossRefGoogle Scholar
  8. 8.
    N. Auphan, J. A. DiDonato, C. Rosette, A. Helmberg, and M. Karin. Immunosuppression by glucocorticoids: Inhibition of NF-κB activity through induction of IκBα synthesis. Science 270:286–290 (1995).PubMedCrossRefGoogle Scholar
  9. 9.
    S. R. Max, J. Mill, K. Mearow, M. Konagaya, Y. Konagaya, J. W. Thomas, C. Banner, and L. Vitkovi. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscle. Am. J. Physiol. 255:E397–E408 (1988).PubMedGoogle Scholar
  10. 10.
    F. D. Boudinot, R. D'Ambrosio, and W. J. Jusko. Receptor-mediated pharmacodynamics of prednisolone in the rat. J. Pharmacokin. Biopharm. 14:469–493 (1986).CrossRefGoogle Scholar
  11. 11.
    A. I. Nichols, F. D. Boudinot, and W. J. Jusko. Second generation model for prednisolone pharmacodynamics in the rat. J. Pharmacokin. Biopharm. 17:209–227 (1989).CrossRefGoogle Scholar
  12. 12.
    D. B. Haughey and W. J. Jusko. Receptor-mediated methylprednisolone pharmacodynamics in rats: Steroid-induced receptor down-regulation. J. Pharmacokin. Biopharm. 20:333–355 (1992).CrossRefGoogle Scholar
  13. 13.
    Z.-X. Xu, Y.-N. Sun, D. C. DuBois, R. R. Almon, and W. J. Jusko. Third-generation model for corticosteroid pharmacodynamics: Roles of glucocorticoid receptor mRNA and tyrosine aminotransferase mRNA in rat liver. J. Pharmacokin. Biopharm. 23:163–181 (1995).CrossRefGoogle Scholar
  14. 14.
    Y.-N. Sun, D. C. DuBois, R. R. Almon, and W. J. Jusko. Fourth-generation model for corticosteroid pharmacodynamics: A model for methylprednisolone effects on receptor/gene-mediated glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver. J. Pharmacokin. Biopharm. 26:289–317 (1998).CrossRefGoogle Scholar
  15. 15.
    Y.-N. Sun, L. I. McKay, D. C. DuBois, R. R. Almon, and W. J. Jusko. Pharmacokinetic/pharmacodynamic models for corticosteroid receptor down-regulation and glutamine synthetase induction in rat skeletal muscle by a receptor/gene-mediated mechanism. J. Pharmacol. Exp. Ther. 288: 720–728 (1999).PubMedGoogle Scholar
  16. 16.
    N. L. Dayneka, V. Garg, and W. J. Jusko, Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokin. Biopharm. 21:457–478 (1993).CrossRefGoogle Scholar
  17. 17.
    Y. Dong, L. Poellinger, J.-A. Gustafsson, and S. Okret. Regulation of glucocorticoid receptor expression: Evidence for transcriptional and posttranslational mechanism. Mol. Endocrinol. 2:1256–1264 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    W. V. Vedeckis, M. Ali, and H. R. Allen. Regulation of glucocorticoid receptor protein and mRNA levels. Cancer Res. 49(Suppl.):2295s–2320s (1989).PubMedGoogle Scholar
  19. 19.
    M. J. Czar, J. K. Owens-Grillo, K. D. Dittmar, K. A. Hutchison, A. M. Zacharek, K. L. Leach, M. R. Deibel Jr., and W. B. Pratt. Characterization of the protein-protein interactions determining the shock protein (hsp90.hsp70.hsp56) heterocomplex. J. Biol. Chem. 269:11155–11161 (1994).PubMedGoogle Scholar
  20. 20.
    E. Orti, L. M. Hu, and A. Munck. Kinetics of glucocorticoid receptor phosphorylation in intact cells. Evidence for hormone-induced hyperphosphorylation after activation and recycling of hyperphosphorylated receptors. J. Biol. Chem. 268:7779–7784 (1993).PubMedGoogle Scholar
  21. 21.
    R. M. Oakley and J. A. Cidlowski. Homologous down regulation of the glucocorticoid receptor: The molecular machinery. Crit. Rev. Eukary. Gen. Expr. 3:63–88 (1993).Google Scholar
  22. 22.
    P. Bernstein, S. W. Peltz, and J. Ross. The poly(A)—poly(A)-binding protein complex is a major determination of mRNA stability in vitro. Mol. Cell Biol. 9:659–670 (1989).PubMedCentralPubMedGoogle Scholar
  23. 23.
    J. S. Malter. Identification of a AUUUA-specific messenger RNA binding protein. Science 246:664–666 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    I. Segard-Maurel, K. Rajkowski, N. Jibard, G. Schweizer-Groyer, E.-E. Baulieu, and F. Cadepond. Glucocorticoid receptor dimerization investigated by analysis of receptor binding to glucocorticosteroid responsive elements using a monomer-dimer equilibrium model. Biochemistry 35:1634–1642 (1996).PubMedCrossRefGoogle Scholar
  25. 25.
    A. J. Cooney and S. Y. Tsai. Nuclear receptor-DNA interactions. In M.-J. Tsai and B. W. O'Malley (eds.), Mechanism of Steroid Hormone Regulation of Gene Transcription, R. G. Landes, 1994, pp. 25–59.Google Scholar
  26. 26.
    A. Munck and N. J. Holbrook. Glucocorticoid-receptor complexes in rat thymus cells: Rapid kinetic behavior and a cyclic model. J. Biol. Chem. 259:820–831 (1984).PubMedGoogle Scholar
  27. 27.
    W. F. Ebling, S. J. Szefler, and W. J. Jusko. Methylprednisolone disposition in rabbits: Analysis, prodrug conversion, reversible metabolism and comparison with man. Drug Metab. Dispos. 13:296–304 (1985).PubMedGoogle Scholar
  28. 28.
    D. Z. D'Argenio and A. Schumitzky. ADAPT II User's Guide: Pharmacokinetic/pharmacodynamic Systems Analysis Software, Biomedical Simulations Resource, Los Angeles, 1997.Google Scholar
  29. 29.
    O. M. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 173:265–272 (1951).Google Scholar
  30. 30.
    D. C. DuBois, R. R. Almon, and W. J. Jusko. Molar quantification of specific messenger ribonucleic acid expression in Northern hybridization using cRNA standards. Anal. Biochem. 210:140–144 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    P. A. Krieg and D. A. Melton. In vitro RNA synthesis with SP6 RNA polymerase. Meth. Enzymol. 155:397–415 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    J. M. Chirgwin, A. E. Przybyla, R. J. MacDonald, and W. J. Rutter. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299 (1979).PubMedCrossRefGoogle Scholar
  33. 33.
    D. C. DuBois, Z.-X. Xu, L. McKay, R. R. Almon, N. Pyszczynski, and W. J. Jusko. Differential dynamics of receptor down-regulation and tyrosine aminotransferase induction following glucocorticoid treatment. J. Steroid Biochem. Molec. Biol. 54:237–243 (1995).PubMedCrossRefGoogle Scholar
  34. 34.
    J. P. Northrop, M. Danielsen, and G. M. Ringold. Analysis of glucocorticoid unresponsive cell variants using a mouse glucocorticoid receptor complementary DNA clone. J. Biol. Chem. 261:11064–11070 (1986).PubMedGoogle Scholar
  35. 35.
    T. I. Diamondstone. Assay of tyrosine aminotransferase activity by conversion of p-hydroxyphenylpyruvate to p-hydroxybenzaldehyde. Anal. Biochem. 16:395–401 (1966).CrossRefGoogle Scholar
  36. 36.
    P-Pharm: Professional Desktop Data Modeling Software for Pharmacokinetics. Version 1.4, SIMED Scientific Software, France.Google Scholar
  37. 37.
    L. Z. Benet and R. L. Galeazzi. Noncompartmental determination of the steady-state volume of distribution. J. Pharm. Sci. 68:1071–1074 (1979).PubMedCrossRefGoogle Scholar
  38. 38.
    C. C. Peck, S. L. Beal, L. B. Sheiner, and A. I. Nichols. Extended least squares nonlinear regression: A possible solution to the “choice of weights” problem in analysis of individual pharmacokinetic data. J. Pharmacokin. Biopharm. 12:545–558 (1984).CrossRefGoogle Scholar
  39. 39.
    A. J. Bailer. Testing for the equality of area under the curves when using destructive measurement techniques. J. Pharmacokin. Biopharm. 16:303–309 (1988).CrossRefGoogle Scholar
  40. 40.
    J. R. Nedelman, E. Gibiansky, and D. T. W. Lau, Applying Bailer's method for AUC confidence intervals to sparse sampling. Pharm. Res. 12:124–128 (1995).PubMedCrossRefGoogle Scholar
  41. 41.
    Y.-N. Sun and W. J. Jusko. Transmit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. J. Pharm. Sci. 87:732–737 (1998).PubMedCrossRefGoogle Scholar
  42. 42.
    L. I. McKay, D. C. DuBois, Y.-N. Sun, R. R. Almon, and W. J. Jusko. Corticosteroid effects in skeletal muscle: Gene induction/receptor autoregulation. Muscle Nerve 20:1318–1320 (1997).PubMedCrossRefGoogle Scholar
  43. 43.
    J. Gabrielsson and D. L. Weiner. Parameter estimation. In Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications, 2nd ed., Swedish Pharmaceutical Press, 1997, pp. 31–57.Google Scholar
  44. 44.
    W. Mendenhall, D. D. Wackerly, and R. L. Scheaffer. Hypothesis testing. In Mathematical Statistics with Applications, PWS-KENT Publishing, 1990, pp. 427–491.Google Scholar
  45. 45.
    W. J. Jusko, H. C. Ko, and W. F. Ebling. Convergence of direct and indirect pharmacodynamic response models. J. Pharmacokin. Biopharm. 23:5–8 (1995).CrossRefGoogle Scholar
  46. 46.
    D. B. Haughey and W. J. Jusko. Bioavailability and nonlinear disposition of methylprednisolone and methylprednisone in the rat. J. Pharm. Sci. 81:117–121 (1992).PubMedCrossRefGoogle Scholar
  47. 47.
    S. J. Szefler, J. Q. Rose, E. F. Ellis, S. L. Spector, A. W. Green, and W. J. Jusko. The effect of troleandomycin on methylprednisolone elimination. J. Allergy Clin. Immunol. 66:447–451 (1980).PubMedCrossRefGoogle Scholar
  48. 48.
    C. Monder and V. Lakshmi. Evidence for kinetically distinct forms of corticosteroid 11 β-dehydrogenase in rat liver microsomes. J. Steroid Biochem. 32:77–83 (1989).PubMedCrossRefGoogle Scholar
  49. 49.
    H. Cheng and W. J. Jusko. Pharmacokinetics of reversible systems. Biopharm. Drug Dispos. 14:721–766 (1993).PubMedCrossRefGoogle Scholar
  50. 50.
    A.-N. Kong and W. J. Jusko. Disposition of methylprednisolone and its sodium succinate prodrug in vivo and in perfused liver of rats: Nonlinear and sequential first-pass elimination. J. Pharm. Sci. 80:409–415 (1991).PubMedCrossRefGoogle Scholar
  51. 51.
    M. Wakelkamp, G. Alvan, J. Gabrielsson, and G. Paintaud. Pharmacodynamic modeling of furosemide tolerance after multiple intravenous administration. Clin. Pharmacol. Ther. 60:75–88 (1996).PubMedCrossRefGoogle Scholar
  52. 52.
    J. A. Bauer and H.-L. Fung. Pharmacodynamic models of nitroglycerin-induced hemodynamic tolerance in experimental heat failure. Pharm. Res. 11:816–823 (1994).PubMedCrossRefGoogle Scholar
  53. 53.
    J. Shi, N. L. Benowitz, C. P. Denaro, and L. B. Sheiner. Pharmacokinetic-pharmacodynamic modeling of caffeine: tolerance to pressor effects. Clin. Pharmacol. Ther. 53:6–14 (1993).PubMedCrossRefGoogle Scholar
  54. 54.
    G. Movin-Osswald and M. Hammerlund-Udenaes. Prolactin release after remoxipride by an integrated pharmacokinetic-pharmacodynamic model with intra-and interindividual aspects. J. Pharmacol. Exp. Ther. 274:921–927 (1995).PubMedGoogle Scholar
  55. 55.
    J. J. Lima, J. J. Krukemyer, and H. Boudoulas. Drug-or hormone-induced adaptation: Model of adrenergic hypersensitivity. J. Pharmacokin. Biopharm. 17:347–364 (1989).CrossRefGoogle Scholar
  56. 56.
    J. J. Pink and V. C. Jordan. Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines. Cancer Res. 56:2321–2330 (1996).PubMedGoogle Scholar
  57. 57.
    J. B. Levy, T. M. Seay, D. J. Tindall, and D. A. Husmann. The effects of androgen administration on phallic androgen receptor. J. Urol. 156:775–779 (1996).PubMedCrossRefGoogle Scholar
  58. 58.
    M. Gilli, J. J. Chiu, and M. J. Lenardo. NF-κB and Rel: Participants in a multiform transcriptional regulatory system. Int. Rev. Cytol. 143:1–62 (1993).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Yu-Nien Sun
    • 1
    • 2
  • Debra C. DuBois
    • 1
  • Richard R. Almon
    • 1
  • Nancy A. Pyszczynski
    • 1
  • William J. Jusko
    • 1
  1. 1.Department of Pharmaceutics, School of PharmacyState University of New York at BuffaloBuffalo
  2. 2.Department of Pharmacokinetics and MetabolismGenentech Inc.South San Francisco

Personalised recommendations