Advertisement

Journal of Sol-Gel Science and Technology

, Volume 26, Issue 1–3, pp 625–628 | Cite as

Reverse Saturable Optical Absorption of C60, Soluble Methanofullerenes, and Fullerodendrimers in Sol-Gel Mesoporous Silica Host Matrices

  • Y. Rio
  • D. Felder
  • G. Kopitkovas
  • A. Chugreev
  • J.F. Nierengarten
  • R. Lévy
  • J.L. Rehspringer
Article

Abstract

Porous sol-gel glasses with various pore size distributions are prepared and either impregnated with pure C60 or soaked with methanofullerenes or fullerodendrimers derivative solution. Induced absorption or “reverse saturable absorption” (RSA) has been studied in both types of solid materials. The samples impregnated by pure C60 mainly contain well-dispersed fullerene molecules. Unlike crystalline films of C60, their absorption dynamics can be well described by a 5-level model, developed for non-interacting C60-molecules in solutions. Methanofullerene samples, on the other hand, show signs of micellar aggregation and therefore RSA dynamics, which are influenced by solid state effects. Fullerodendrimers derivatives lead to the highest quantum yield.

reverse saturable absorption fullerene compounds induced absorption optical limiting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.P. Joshi, R. Mishira, H.S. Ravat, T.C. Mehendale, and K.C. Rustagi, Appl. Phys. Lett. 62(15), 1763 (1993).Google Scholar
  2. 2.
    D.G. McLean, R.L. Sutherland, M.C. Brant, D.M. Brandelik, P.A. Fleitz, and T. Pottenger, Optics Letters 18, 858 (1993).Google Scholar
  3. 3.
    A. Kost, L. Tutt, M.B. Klein, T.K. Dougherty, and W.E. Elias, Optics Letters 18, 334 (1993).Google Scholar
  4. 4.
    L. Smilowitz, D. McBranch, V. Klimov, J.M. Robinson, M. Grigorova, B.J. Weyer, A.Google Scholar
  5. 5.
    R. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, J. Phys. Chem. 98, 3492 (1994).Google Scholar
  6. 6.
    J. Eastoe, E.R. Crooks, A. Beeby, and R.K. Heenan, Chemical Physics Letters 245, 571 (1995).Google Scholar
  7. 7.
    D.M. Guldi, H. Hungerbühler, and K.-D. Asmus, J. Phys. Chem. 99, 13487 (1995).Google Scholar
  8. 8.
    D.M. Guldi, J. Phys. Chem. A 101, 3895 (1997).Google Scholar
  9. 9.
    D.M. Guldi, H. Hungerbühler, and K.-D. Asmus, J. Phys. Chem. A 101, 1783 (1997).Google Scholar
  10. 10.
    Y. Rio, J.F. Nicoud, J.L. Rehspringer, and J.F. Nierengarten, Tetrahedron Lett. 41, 10207 (2000).Google Scholar
  11. 11.
    J. Schell, D. Ohlmann, D. Brinkmann, R. Lévy, J.L. Rehspringer, and B. Hönerlage, J. Chem. Phys. 111, 5929 (1999).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Y. Rio
  • D. Felder
  • G. Kopitkovas
  • A. Chugreev
  • J.F. Nierengarten
  • R. Lévy
  • J.L. Rehspringer

There are no affiliations available

Personalised recommendations