Skip to main content
Log in

Systematic Position of the African Dormouse Graphiurus (Rodentia, Gliridae) Assessed from Cytochrome b and 12S rRNA Mitochondrial Genes

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Gliridae is a small family of rodents including three subfamilies: the Eurasian Glirinae (with three genera) and Leithiinae (with four genera) and the African Graphiurinae (with a single genus). Phylogenetic relationships among these eight genera are not fully resolved based on morphological characters. Moreover, the genus Graphiurus is characterized by numerous peculiar features (morphological characters and geographical distribution), raising the question of its relationships to the family Gliridae. The phylogenetic position of Graphiurus and the intra-Gliridae relationships are here addressed by a molecular analysis of 12S RNA and cytochrome b mitochondrial gene sequences for six glirid genera. Phylogenetic analyses are performed with three construction methods (neighbor-joining, maximum parsimony and maximum likelihood) and tests of alternative topologies with respect to the most likely. Our analyses reveal that Graphiurus is clearly a member of the Gliridae, refuting the hypothesis that the family could be paraphyletic. Among Gliridae, phylogenetic relationships are poorly resolved: the Leithiinae could be monophyletic, there is no support for the subfamily Glirinae, and the closest relative of Graphiurus is not identified. The inclusion of Graphiurus among Gliridae allows us to postulate that its hystricomorphous condition has been achieved convergently with other hystricomorphous rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

LITERATURE CITED

  • Anonymous (1998). Opinion 1894: Regnum Animale...; Ed. 2 (M. J. Brisson, 1762): rejected for nomenclatural purposes, with the conservation of the mammalian generic names Philander (Marsupialia), Pteropus (Chiroptera), Glis, Cuniculus, and Hydrochoerus (Rodentia), Meles, Lutra, and Hyena (Carnivora), Tapirus (Perissodactyla), Tragulus and Giraffa (Artiodactyla). Bull. Zool. Nomenclat. 55: 64–71.

  • Bachmayer, F., and Wilson, R. W. (1980). A third contribution to the fossil record small mammal fauna of Kohldfidish (Burgeland), Austria. Ann. Naturhistor. Mus. Wien 83: 351–386.

    Google Scholar 

  • Bachmayer, F., and Wilson, R. W. (1987). Two additions to the Kohldfidish (Burgeland) fauna of Eastern Austria. Ann. Naturhistor. Mus. Wien 91: 1–5.

    Google Scholar 

  • Barome, P.-O., Monnerot, M., and Gautun, J.-C. (1998). Intrageneric phylogeny of Acomys (Rodentia, Muridae) using mitochondrial gene cytochrome b. Mol. Phylogenet. Evol. 9: 560–566.

    PubMed  Google Scholar 

  • Bibb, M. J. R., Van Etten, A., Wright, C. T., Walberg, M. W., and Clayton, D. A. (1981). Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167–180.

    Article  PubMed  Google Scholar 

  • Brandt, J. F. (1855). Beiträge zur nähern Kenntniss der Säugetiere Russlands. Mem. Acad. Imp. St. Petersbourg 9: 1–375.

    Google Scholar 

  • Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.

    Google Scholar 

  • Bugge, J. (1974). The cephalic arterial system in insectivores, primates, rodents and lagomorphs, with special reference to the systematic classification. Acta Anat. 87(Suppl. 62):1–160.

    PubMed  Google Scholar 

  • Bugge, J. (1985). Systematic value of the carotid arterial pattern in rodents, In: Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, W. P. Luckett, and J.-L. Hartenberger, eds., pp. 381–402, Plenum Press, New York.

    Google Scholar 

  • Cao, Y., Adachi, J., and Hasegawa, M. (1998). Comment on the quartet puzzling method for finding maximum-likelihood tree topologies. Mol. Biol. Evol. 15: 87–89.

    Google Scholar 

  • Catzeflis, F. M. (1991). Animal tissue collections for molecular genetics and systematics. Trends Ecol. Evol. 68: 168.

    Google Scholar 

  • Catzeflis, F. M., Hänni, C., Sourrouille, P., and Douzery, E. (1995). Molecular systematics of hystricognath rodents: The contribution of sciurognath mitochondrial 12S rRNA sequences. Mol. Phylogenet. Evol. 4: 357–360.

    PubMed  Google Scholar 

  • Chaline, J., and Mein, P. (1979). Les Rongeurs et l'Evolution, DOIN, Paris.

    Google Scholar 

  • Cunningham, C. W. (1997). Can three incongruence tests predict when data should be combined? Mol. Biol. Evol. 14: 733–740.

    PubMed  Google Scholar 

  • Daams, R., and De Bruijn, H. (1995). A classification of the Gliridae (Rodentia) on the basis of dental morphology. Proc. II. Conf. Dormice. Hystrix 6: 1–50.

    Google Scholar 

  • Daams, R., and Van der Meulen, J. (1984). Paleoenvironmental and paleoclimatic interpretation of micromammal faunal successions in the Upper Oligocene and Miocene of the North Central Spain. Paléobiol. Cont. (Montpellier) 14: 241–257.

    Google Scholar 

  • Douzery, E., and Catzeflis, F. M. (1995). Molecular evolution of the mitochondrial 12S rRNA in Ungulata (Mammalia). J. Mol. Evol. 41: 622–636.

    PubMed  Google Scholar 

  • Dubois, J.-Y., Rakotondravony, D., Hänni, C., Sourrouille, P., and Catzeflis, F. M. (1996). Molecular evolutionary relationships of three genera of Nesomyinae, endemic rodent taxa from Madagascar. J. Mammal. Evol. 3: 239–259.

    Google Scholar 

  • Ellerman, J. R. (1940). The families and genera of modern rodents. Br. Mus. (Nat. Hist.) 1: 1–689.

    Google Scholar 

  • Farris, J. S., Källersjö, M., Kluge, A. G., and Bult, C. (1995). Testing significance of incongruence. Cladistics 10: 315–319.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Frye, M. S., and Hedges, S. B. (1995). Monophyly of the order Rodentia inferred from mitochondrial DNA sequences of the genes for 12S rRNA, 16S rRNA, and tRNA-valine. Mol. Biol. Evol. 12: 168–176.

    PubMed  Google Scholar 

  • Galadeta, G. G., Pepe, G., De Candia, Quadriello, C., Sbisa, E., and Saccone, C. (1989). The complete nucleotide sequence of Rattus norvegicus: Cryptic signals revealed by comparative analysis between vertebrates. J. Mol. Evol. 28: 497–516.

    PubMed  Google Scholar 

  • Hänni, C., Laudet, V., Barriel, V., and Catzeflis, F. M. (1995). Evolutionary relationships of Acomys and other murids (Rodentia, Mammalia) based on complete 12S rRNA mitochondrial gene sequences. Israel J. Zool. 41: 131–146.

    Google Scholar 

  • Hartenberger, J.-L. (1985). The order Rodentia: Major questions on their evolutionary origin, relationships and suprafamilial systematics. In: Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, W. P. Luckett, and J.-L. Hartenberger, eds., pp. 1–33, Plenum Press, New York.

    Google Scholar 

  • Hartenberger, J.-L. (1994). The evolution of the Gliroidea. In: Rodent and Lagomorph Families of Asian Origins and Diversification, C. K. Li, Y. Tomida, and T. Setoguchi, eds., pp. 19–33, National Science Museum Monographs, Tokyo.

    Google Scholar 

  • Hendey, Q. B. (1981). Paleoecology of the late Tertiary fossil occurrences in “E” Quarry, Langebaanweg, South Africa, and a reinterpretation of their geological context. Ann. S. Afr. Mus. 84: 1–104.

    Google Scholar 

  • Hillis, D. M., and Huelsenbeck, J. P. (1992). Signal, noise, and reliability in molecular phylogenetic analyses. J. Hered. 83: 189–195.

    PubMed  Google Scholar 

  • Holden, M. E. (1993). Family Myoxidae. In: Mammal Species of the World, a Taxonomic and Geographic Reference, D. E. Wilson, and D. M. Reeder, eds., pp. 763–770, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Holden, M. H. (1996). Systematic revision of subsaharan African dormice (Rodentia: Myoxidae: Graphiurus). Part I. An introduction to the generic revision, and a revision of Graphiurus surdus. Am. Mus. Novit. 3157: 1–44.

    Google Scholar 

  • Jaeger, J.-J. (1977). Les rongeurs du Miocène moyen et supérieur du Maghreb. Palaeovertebrata 8: 1–166.

    Google Scholar 

  • Kishino, H., and Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29: 170–179.

    PubMed  Google Scholar 

  • Koenigswald, W. v. (1992). Die Schmelzmuster in den Schneidezähnen der Gliroidea (Gliridae und Seleviniidae, Rodentia, Mammalia) und ihre systematische Bedeutung. Z. Saügetierkunde 58: 92–115.

    Google Scholar 

  • Lara, M. C., Patton, J. L., and Da Silva, M. N. F. (1996). The simultaneous diversification of South American echimyid rodents (Hystricognathi) based on complete cytochrome b sequences. Mol. Phylogenet. Evol. 5: 403–413.

    PubMed  Google Scholar 

  • Lecointre, G., Philippe, H., Lê, H. L. V., and Le Guyader, H. (1993). Species sampling has a major impact on phylogenetic inference. Mol. Phylogenet. Evol. 2: 205–224.

    PubMed  Google Scholar 

  • Ma, D.-P., Zharkikh, A., Graur, D., VandeBerg, J. L., and Li, W.-H. (1993). Structure and evolution of opossum, guinea pig, and porcupine cytochrome b genes. J. Mol. Evol. 36: 327–334.

    PubMed  Google Scholar 

  • Maier, W., and Schrenk, F. (1987). The hystricomorphy of the Bathyergidae, as determined from ontogenetic evidence. Z. Saügetierk. 52: 156–164.

    Google Scholar 

  • Montgelard, C., Catzeflis, F. M., and Douzery, E. (1997). Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol. Biol. Evol. 14: 550–559.

    PubMed  Google Scholar 

  • Nedbal, M. A., Honeycutt, R. L., and Schlitter, D. A. (1996). Higher-level systematics of rodents (Mammalia, Rodentia): Evidence from the mitochondrial 12S rRNA gene. J. Mammal. Evol. 3: 201–237.

    Google Scholar 

  • Parent, J.-P. (1980). Recherche sur l'oreille moyenne des rongeurs actuels et fossiles: Anatomie, valeur systématique. Mem. Trav. E.P.H.E. (Montpellier) 11: 1–286.

    Google Scholar 

  • Philippe, H. (1993). MUST: A computer package of management utilities for sequences and trees. Nucleic Acids Res. 21: 5264–5272.

    PubMed  Google Scholar 

  • Philippe, H. (1997). Rodent monophyly: Pitfalls of molecular phylogenies. J. Mol. Evol. 45: 712–715.

    PubMed  Google Scholar 

  • Philippe, H., and Douzery, E. (1994). The pitfalls of molecular phylogeny based on four species as illustrated by the Cetacea/Artiodactyla relationships. J. Mammal. Evol. 2: 133–152.

    Google Scholar 

  • Pocock, T. N. (1976). Pliocene mammalian microfauna from Langebaanweg: A new fossil genus linking the Otomyinae with the Murinae. South Afr. J. Sci. 72: 58–60.

    Google Scholar 

  • Reyes, A., Pesole, G., and Saccone, C. (1998). Complete mitochondrial DNA sequence of the fat dormouse, Glis glis: Further evidence of rodent paraphyly. Mol. Biol. Evol. 15: 499–505.

    PubMed  Google Scholar 

  • Robinson, M., Catzeflis, F. M., Briolay, J., and Mouchiroud, D. (1997). Molecular phylogeny of rodents, with special emphasis on murids: Evidence from nuclear gene LCAT. Mol. Phylogenet. Evol. 8: 423–434.

    PubMed  Google Scholar 

  • Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Siddal, M. (1996). Random cladistics. Version 4.0. Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (anonymous ftp://zoo.toronto.edu/pub).

    Google Scholar 

  • Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. His. 85: 1–350.

    Google Scholar 

  • Springer, M. S., and Douzery, E. (1996). Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules. J. Mol. Evol. 43: 357–373.

    PubMed  Google Scholar 

  • Strimmer, K., and von Haeseler, A. (1996). Quartet puzzling: A quartet maximum-likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13: 964–969.

    Google Scholar 

  • Sullivan, J., and Swofford, D. L. (1997). Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. J. Mammal. Evol. 4: 77–86.

    Google Scholar 

  • Suzuki, H., Minato, S., Sakurai, S., Tsuchiya, K., and Fokin, I. M. (1997). Phylogenetic position and geographic differentiation of the Japanese dormouse, Glirulus japonicus, revealed by variations among rDNA, mtDNA and the Sry gene. Zool. Sci. 14: 167–173.

    PubMed  Google Scholar 

  • Swofford, D. L. (1993). PAUP 3.1.1: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Computer program distributed by the Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512–526.

    PubMed  Google Scholar 

  • Tullberg, T. (1899). Ueber das System der Nagetiere: Eine phylogenetische studie. Nova Acta Reg. Soc. Sci. Uppsala Ser. 3 18: 1–514.

    Google Scholar 

  • Vachontov, E. L., and Potapova, E. G. (1991). On the position of dormice (Gliroidea) in the system of rodents. Proc. Zool. Inst. 243: 127–147.

    Google Scholar 

  • Vianey-Liaud, M. (1985). Possible evolutionary relationships among Eocene and lower Oligocene rodents in Asia, Europe and North America, In: Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, W. P. Luckett, and J.-L. Hartenberger, eds., pp. 277–309, Plenum Press, New York.

    Google Scholar 

  • Vianey-Liaud, M., and Jaeger, J. J. (1996). A new hypothesis for the origin of African Anomaluridae and Graphiuridae (Rodentia). Palaeovertebrata 25: 349–358.

    Google Scholar 

  • Vianey-Liaud, M., Jaeger, J.-J., Hartenberger, J.-L., and Mahboudi, M. (1994). Les rongeurs de l'Eocène d'Afrique Nord-Occidentale (Glib Zegdou (Algérie) et Chambi (Tunisie)) et l'origine des Anomaluridae. Palaeovertebrata 23: 93–118.

    Google Scholar 

  • Wahlert, J. H., Sawitzke, S. L., and Holden, M. E. (1993). Cranial anatomy and relationships of dormice (Rodentia, Myoxidae). Am. Mus. Novit. 3061: 1–32.

    Google Scholar 

  • Wettstein, P. J., Strausbauch, M., Lamb, T., States, J., Chackraborty, R., Jin, L., and Riblet, R. (1995). Phylogeny of six Sciurus aberti subspecies based on nucleotide sequences of cytochrome b. Mol. Phylogenet. Evol. 4: 150–162.

    PubMed  Google Scholar 

  • Wilson, D. E., and Reeder, D. M. (1993). Mammal Species of the World: A Taxonomic and Geographic Reference, Smithsonian Institution Press, Washington, DC, and London.

    Google Scholar 

  • Winge, H. (1941). The Interrelationships of the Mammalian Genera. Rodentia, Carnivora, Primates, C. A. Reitzels Forlag, Copenhagen.

    Google Scholar 

  • Wood, A. E. (1937). The mammalian fauna of the White River Oligocene. Part II. Rodentia. Trans. Am. Phil. Soc. N.S. 28: 155–269.

    Google Scholar 

  • Wood, A. E. (1985). The relationships, origin and dispersal of the hystricognathous rodents. In: Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, W. P. Luckett, and J.-L. Hartenberger, eds., pp. 475–513, Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine Montgelard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentz, S., Montgelard, C. Systematic Position of the African Dormouse Graphiurus (Rodentia, Gliridae) Assessed from Cytochrome b and 12S rRNA Mitochondrial Genes. Journal of Mammalian Evolution 6, 67–83 (1999). https://doi.org/10.1023/A:1020590430250

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020590430250

Navigation