Skip to main content
Log in

Principles of the light-limited chemostat: theory and ecological applications

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Light is the energy source that drives nearly all ecosystems on planet Earth. Yet, light limitation is still poorly understood. In this paper, we present an overview of the principles of the light-limited chemostat. The theory for light-limited chemostats differs considerably from the standard theory for substrate-limited chemostats. In particular, photons cannot be mixed by vigorous stirring, so that phototrophic organisms experience the light-limited chemostat as a heterogeneous environment. Similar to substrate-limited chemostats, however, light-limited chemostats do reach a steady state. This allows the study of phototrophic microorganisms under well-controlled light conditions, at a constant specific growth rate, for a prolonged time. The theory of the light-limited chemostat is illustrated with several examples from laboratory experiments, and a variety of ecological applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aanesen RT, Eilertsen HC & Stabell OB (1998) Light-induced toxic properties of the marine alga Phaeocystis pouchetii towards cod larvae. Aquat. Toxicol. 40: 109–121.

    Article  CAS  Google Scholar 

  • Anderson DM & Garrison DL (eds) (1997) The ecology and oceanography of harmful algal blooms. Limnol. Oceanogr. 42: 1009–1305.

  • Baly ECC (1935) The kinetics of photosynthesis. Proc. R. Soc. Lond. B 117: 218–239.

    Article  CAS  Google Scholar 

  • Bannister TT (1974) Production equations in terms of chlorophyll concentration, quantum yield, and upper limit to production. Limnol. Oceanogr. 19: 1–12.

    Google Scholar 

  • Blackman FF (1905) Optima and limiting factors. Ann. Bot. 19: 281–295.

    Google Scholar 

  • Bohannan BJM & Lenski RE (1997) The effect of resource enrichment on a chemostat community of bacteria and phage. Ecology 78: 2303–2315.

    Article  Google Scholar 

  • Boyd PW, Crossley AC, DiTullio GR, Griffiths FB, Hutchins DA, Queguiner B, Sedwick PN & Trull TW (2001) Control of phytoplankton growth by iron supply and irradiance in the subantarctic Southern Ocean: experimental results from the SAZ project. J. Geophys. Res. Oceans 106: 31573–31583.

    Article  CAS  Google Scholar 

  • Chalker BE (1980) Modeling light saturation curves for photosynthesis: an exponential function. J. Theor. Biol. 84: 205–215.

    PubMed  CAS  Google Scholar 

  • Choris I & Bartram J (eds) (1999) Toxic Cyanobacteria in Water. Spon, London.

    Google Scholar 

  • Cloern JE (1999) The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquat. Ecol. 33: 3–16.

    Article  Google Scholar 

  • Colijn F & Cadée (2002) Is phytoplankton growth in the Wadden Sea light limited or nutrient limited? J. Sea Res. (in press).

  • Daehler CC & Strong DR (1996) Can you bottle nature? The role of microcosms in ecological research. Ecology 77: 663–664.

    Article  Google Scholar 

  • De Baar HJW, de Jong JTM, Löscher BM, Veth C, Bathmann U & Smetacek V (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373: 412–415.

    Article  CAS  Google Scholar 

  • De Nobel WT, Matthijs HCP, von Elert E & Mur LR (1998) Comparison of the light-limited growth of the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. New Phytol. 138: 579–587.

    Article  CAS  Google Scholar 

  • Diehl S, Berger S, Ptacnik R & Wild A (2002) Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecology 83: 399–411.

    Google Scholar 

  • Dittmann E, Erhard M, Kaebernick M, Scheler C, Neilan BA, von Döhren H & Börner T (2001) Altered expression of two light-dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806. Microbiology 147: 3113–3119.

    PubMed  CAS  Google Scholar 

  • Droop MR (1974) The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. UK 54: 825–855.

    Article  CAS  Google Scholar 

  • Ducobu H, Huisman J, Jonker RR & Mur LR (1998) Competition between a prochlorophyte and a cyanobacterium under various phosphorus regimes: comparison with the Droop model. J. Phycol. 34: 467–476.

    Article  Google Scholar 

  • Dykhuizen DE (1990) Experimental studies of natural selection in bacteria. Annu. Rev. Ecol. Syst. 21: 373–398.

    Article  Google Scholar 

  • Ebert U, Arrayás M, Temme N, Sommeijer B & Huisman J (2001) Critical conditions for phytoplankton blooms. B. Math. Biol. 63: 1095–1124.

    Article  CAS  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH & Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Dubinsky Z & Wyman K (1985) Growth-irradiance relationships in phytoplankton. Limnol. Oceanogr. 30: 311–321.

    CAS  Google Scholar 

  • Flöder S, Urabe J & Kawabata Z (2002) The influence of fluctuating light intensities on species composition and diversity of natural phytoplankton communities from Lake Biwa, Japan. Oecologia (in press).

  • Fredrickson AG (1977) Behavior of mixed cultures of microorganisms. Annu. Rev. Microbiol. 31: 63–87.

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais JM & Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87–92.

    CAS  Google Scholar 

  • Gerritse J, Schut F & Gottschal JC (1992) Modelling of mixed chemostat cultures of an aerobic bacterium, Comamonas testosteroni, and an anaerobic bacterium, Veillonella alcalescens: comparisons with experimental data. Appl. Environ. Microb. 58: 1466–1476.

    CAS  Google Scholar 

  • Gons HJ & Mur LR (1980) Energy requirements for growth and maintenance of Scenedesmus protuberans Fritsch in light-limited continuous cultures. Arch. Microbiol. 125: 9–17.

    Article  CAS  Google Scholar 

  • Grover JP (1991a) Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model. Am. Nat. 138: 811–835.

    Article  Google Scholar 

  • Grover JP (1991b) Dynamics of competition among microalgae in variable environments: experimental tests of alternative models. Oikos 62: 231–243.

    Google Scholar 

  • Harder W, Kuenen JG & Matin A (1977) Microbial selection in continuous culture. J. Appl. Bacteriol. 43: 1–24.

    PubMed  CAS  Google Scholar 

  • Healey FP (1985) Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (Cyanophyceae). J. Phycol. 21: 134–146.

    Article  Google Scholar 

  • Huisman J (1999) Population dynamics of light-limited phytoplankton: microcosm experiments. Ecology 80: 202–210.

    Article  Google Scholar 

  • Huisman J & Weissing FJ (1994) Light-limited growth and competition for light in well-mixed aquatic environments: an elementary model. Ecology 75: 507–520.

    Article  Google Scholar 

  • Huisman J & Weissing FJ (1995) Competition for nutrients and light in a well-mixed water column: a theoretical analysis. Am. Nat. 146: 536–564.

    Article  Google Scholar 

  • Huisman J, Jonker RR, Zonneveld C & Weissing FJ (1999a) Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80: 211–222.

    Article  Google Scholar 

  • Huisman J, van Oostveen P & Weissing FJ (1999b) Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. Am. Nat. 154: 46–68.

    Article  Google Scholar 

  • Ibelings BW, Kroon BMA & Mur LR (1994) Acclimation of photosystem II in a cyanobacterium and a eukaryotic green alga to high and fluctuating photosynthetic photon flux densities, simulating light regimes induced by mixing in lakes. New. Phytol. 128: 407–424.

    Article  CAS  Google Scholar 

  • JanssenM, de Bresser L, Baijens T, Tramper J, Mur LR, Snel JFH & Wijffels RH (2000) Scale-up aspects of photobioreactors: effects of mixing-induced light/dark cycles. J. Appl. Phycol. 12: 225–237.

    Article  CAS  Google Scholar 

  • Jassby AD & Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547.

    CAS  Google Scholar 

  • Kaebernick M, Neilan BA, Börner T & Dittmann E (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl. Environ. Microb. 66: 3387–3392.

    Article  CAS  Google Scholar 

  • Kaunzinger CMK & Morin PJ (1998) Productivity controls foodchain properties in microbial communities. Nature 395: 495–497.

    Article  CAS  Google Scholar 

  • Kirk JTO (1994) Light and Photosynthesis in Aquatic Ecosystems. 2nd Edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kolber Z & Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38: 1646–1665.

    Article  CAS  Google Scholar 

  • Kromkamp J & Peene P (1995) Possibility of net phytoplankton primary production in the turbid Schelde estuary (SW Netherlands). Mar. Ecol. Progr. Ser. 121: 249–259.

    Google Scholar 

  • Kroon BMA (1994) Variability of photosystem II quantum yield and related processes in Chlorella pyrenoidosa (Chlorophyta) acclimated to an oscillating light regime simulating a mixed photic zone. J. Phycol. 30: 841–852.

    Article  CAS  Google Scholar 

  • Lendenmann U, Snozzi M & Egli T (1996) Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture. Appl. Environ. Microb. 62: 1493–1499.

    CAS  Google Scholar 

  • Litchman E & Klausmeier CA (2001) Competition of phytoplankton under fluctuating light. Am. Nat. 157: 170–187.

    Article  PubMed  CAS  Google Scholar 

  • Maldonado MT, Boyd PW, Harrison PJ & Price NM (1999) Colimitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific Ocean. Deep-Sea Res. II 46: 2475–2485.

    Article  CAS  Google Scholar 

  • Martin JH, Gordon RM & Fitzwater SE (1990) Iron in Antarctic waters. Nature 345: 156–158.

    Article  CAS  Google Scholar 

  • Matthijs HCP, Balke H, van Hes UM, Kroon BMA, Mur LR & Binot RA (1996) Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol. Bioeng. 50: 98–107.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell BG, Brody EA, Holm-Hansen O, McCain C & Bishop J (1991) Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol. Oceanogr. 36: 1662–1677.

    Google Scholar 

  • McGrady-Steed J, Harris PM & Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nature 390: 162–165.

    Article  CAS  Google Scholar 

  • Monod J (1950) La technique de culture continue, théorie et applications. Ann. Inst. Pasteur (Paris) 79: 390–410.

    CAS  Google Scholar 

  • Mur LR & Schreurs H (1995) Light as a selective factor in the distribution of phytoplankton species. Wat. Sci. Technol. 32: 25–34.

    Article  Google Scholar 

  • Mur LR, Gons HJ & van Liere L (1977) Some experiments on the competition between green algae and blue-green bacteria in light-limited environments. FEMS Microbiol. Lett. 1: 335–338.

    Article  Google Scholar 

  • Myers J & Graham JR (1971) The photosynthetic unit of Chlorella measured by repetitive short flashes. Plant Physiol. 48: 282–286.

    Article  PubMed  CAS  Google Scholar 

  • Notley-McRobb L & Ferenci T (1999) The generation of multiple co-existing mal-regulatory mutations through polygenic evolution in glucose limited populations of Escherichia coli. Environ. Microbiol. 1: 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Novick A & Szilard L (1950) Experiments with the chemostat on spontaneous mutations of bacteria. Proc. Natl. Acad. Sci. USA 36: 708–719.

    Article  PubMed  CAS  Google Scholar 

  • Pengerud B, Skjoldal EF & Thingstad TF (1987) The reciprocal interaction between degradation of glucose and ecosystem structure: studies in mixed chemostat cultures of marine bacteria, algae and bacterivorous nanoflagellates. Mar. Ecol. Prog. Ser. 31: 111–117.

    Google Scholar 

  • Petersen JE & Hastings A (2001) Dimensional approaches to scaling experimental ecosystems: designing mousetraps to catch elephants. Am. Nat. 157: 324–333.

    Article  PubMed  CAS  Google Scholar 

  • Petersen JE, Chen CC & Kemp WM (1997) Scaling aquatic primary productivity: experiments under nutrient-and light-limited conditions. Ecology 78: 2326–2338.

    Article  Google Scholar 

  • Phlips EJ, Cichra M, Aldridge FJ, Jembeck J, Hendrickson J & Brody R (2000) Light availability and variations in phytoplankton standing crops in a nutrient-rich blackwater river. Limnol. Oceanogr. 45: 916–929.

    Google Scholar 

  • Pirt SJ (1973) Principles of Microbe and Cell Cultivation. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Platt T, Sathyendranath S & Ravindran P (1990) Primary production by phytoplankton: analytic solutions for daily rates per unit area of water surface. Proc. R. Soc. Lond. B 241: 101–111.

    Google Scholar 

  • Platt T, Bird DF & Sathyendranath S (1991) Critical depth and marine primary production. Proc. R. Soc. Lond. B 246: 205–217.

    Google Scholar 

  • Platt T, Sathyendranath S, Ulloa O, Harrison WG, Hoepffner N & Goes J (1992) Nutrient control of phytoplankton photosynthesis in the Western North Atlantic. Nature 356: 229–231.

    Article  Google Scholar 

  • Post AF, Dubinsky Z, Wyman K & Falkowski PG (1984) Kinetics of light-intensity adaptation in a marine planktonic diatom. Mar. Biol. 83: 231–238.

    Article  Google Scholar 

  • Rabinowitch EI (1951) Photosynthesis and Related Processes, Vol. 2. Interscience, New York.

    Google Scholar 

  • Rainey PB, Buckling A, Kassen R & Travisano M (2000) The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol. Evol. 15: 243–247.

    Article  PubMed  Google Scholar 

  • Rapala J & Sivonen K (1998) Assessment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation at different temperatures. Microbial Ecol. 36: 181–192.

    Article  CAS  Google Scholar 

  • Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and C assimilation pathways. New. Phytol. 116: 1–17.

    Article  CAS  Google Scholar 

  • Riegman R & Mur LR (1985) Effects of photoperiodicity and light irradiance on phosphate-limited Oscillatoria agardhii in chemostat cultures. II. Phosphate uptake and growth. Arch. Microbiol. 142: 72–76.

    Article  CAS  Google Scholar 

  • Rosenweig RF, Sharp RR, Treves DS & Adams J (1994) Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137: 903–917.

    Google Scholar 

  • Schreiber U, Schliwa U & Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10: 51–62.

    Article  CAS  Google Scholar 

  • Smith EL (1936) Photosynthesis in relation to light and carbon dioxide. Proc. Natl. Acad. Sci. USA 22: 504–511.

    Article  PubMed  CAS  Google Scholar 

  • Smith HL & Waltman P (1995) The Theory of the Chemostat. Cambridge University Press, Cambridge.

    Google Scholar 

  • Smith VH (1993) Applicability of resource-ratio theory to microbial ecology. Limnol. Oceanogr. 38: 239–249.

    Article  Google Scholar 

  • Steele JH (1962) Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7: 137–150.

    Article  Google Scholar 

  • Sterner RW & Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu. Rev. Ecol. Syst. 25: 1–29.

    Article  Google Scholar 

  • Sunda WG & Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390: 389–392.

    Article  CAS  Google Scholar 

  • Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J. Cons. Perm. Int. Explor. Mer 18: 287–295.

    Google Scholar 

  • Tilman D (1977) Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58: 338–348.

    Article  CAS  Google Scholar 

  • Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton.

    Google Scholar 

  • Tilzer MM (1983) The importance of fractional light absorption by photosynthetic pigments for phytoplankton productivity in Lake Constance. Limnol. Oceanogr. 28: 833–846.

    CAS  Google Scholar 

  • Timmermans KR, Davey MS, van der Wagt B, Snoek J, Geider RJ, Veldhuis MJW, Gerringa LJA & De Baar HJW (2001) Colimitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae). Mar. Ecol. Prog. Ser. 217: 287–297.

    CAS  Google Scholar 

  • Urabe J & Sterner RW (1996) Regulation of herbivore growth by the balance of light and nutrients. Proc. Natl. Acad. Sci. USA 93: 8465–8469.

    Article  PubMed  CAS  Google Scholar 

  • Urabe J, Kule M, Makino W, Yoshida T, Andersen T & Elser JJ (2002) Reduced light increases herbivore production due to stoichiometric effects of light/nutrient balance. Ecology 83: 619–627.

    Google Scholar 

  • Utkilen H & Gjølme N (1992) Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl. Environ. Microb. 58: 1321–1325.

    CAS  Google Scholar 

  • Veldkamp H (1977) Ecological studies with the chemostat. Adv. Microb. Ecol. 1: 59–94.

    CAS  Google Scholar 

  • Velicer GJ & Lenski RE (1999) Evolutionary trade-offs under conditions of resource abundance and scarcity: experiments with bacteria. Ecology 80: 1168–1179.

    Article  Google Scholar 

  • Visser PM, Ibelings BW, van der Veer B, Koedood J & Mur LR (1996) Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, The Netherlands. Freshwat. Biol. 36: 435–450.

    Article  Google Scholar 

  • Visser PM, Passarge J & Mur LR (1997) Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349: 99–109.

    Article  Google Scholar 

  • Vollenweider RA (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol. 33: 53–83.

    CAS  Google Scholar 

  • Webb WL, Newton M & Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17: 281–291.

    Article  Google Scholar 

  • Weissing FJ & Huisman J (1994) Growth and competition in a light gradient. J. Theor. Biol. 168: 323–336.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jef Huisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huisman, J., Matthijs, H.C., Visser, P.M. et al. Principles of the light-limited chemostat: theory and ecological applications. Antonie Van Leeuwenhoek 81, 117–133 (2002). https://doi.org/10.1023/A:1020537928216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020537928216

Navigation