Hydrobiologia

, Volume 475, Issue 1, pp 39–63 | Cite as

Nutrient-enhanced productivity in the northern Gulf of Mexico: past, present and future

  • Nancy N. Rabalais
  • R. Eugene Turner
  • Quay Dortch
  • Dubravko Justic
  • Victor J. BiermanJr.
  • William J. WisemanJr.
Article

Abstract

Nutrient over-enrichment in many areas around the world is having pervasive ecological effects on coastal ecosystems. These effects include reduced dissolved oxygen in aquatic systems and subsequent impacts on living resources. The largest zone of oxygen-depleted coastal waters in the United States, and the entire western Atlantic Ocean, is found in the northern Gulf of Mexico on the Louisiana/Texas continental shelf influenced by the freshwater discharge and nutrient load of the Mississippi River system. The mid-summer bottom areal extent of hypoxic waters (<2 mg l−1 O2) in 1985–1992 averaged 8000 to 9000 km2 but increased to up to 16 000 to 20 700 km2 in 1993–2001. The Mississippi River system is the dominant source of fresh water and nutrients to the northern Gulf of Mexico. Mississippi River nutrient concentrations and loading to the adjacent continental shelf have changed in the last half of the 20th century. The average annual nitrate concentration doubled, and the mean silicate concentration was reduced by 50%. There is no doubt that the average concentration and flux of nitrogen (per unit volume discharge) increased from the 1950s to 1980s, especially in the spring. There is considerable evidence that nutrient-enhanced primary production in the northern Gulf of Mexico is causally related to the oxygen depletion in the lower water column. Evidence from long-term data sets and the sedimentary record demonstrate that historic increases in riverine dissolved inorganic nitrogen concentration and loads over the last 50 years are highly correlated with indicators of increased productivity in the overlying water column, i.e. eutrophication of the continental shelf waters, and subsequent worsening of oxygen stress in the bottom waters. Evidence associates increased coastal ocean productivity and worsening oxygen depletion with changes in landscape use and nutrient management that resulted in nutrient enrichment of receiving waters. A steady-state model, calibrated to different observed summer conditions, was used to assess the response of the system to reductions in nutrient inputs. A reduction in surface layer chlorophyll and an increase in lower layer dissolved oxygen resulted from a reduction of either nitrogen or phosphorus loading, with the response being greater for nitrogen reductions.

eutrophication hypoxia Gulf of Mexico Mississippi River nutrient-enhanced productivity river–ocean interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrose, Jr., R. B., T. A. Wool & J. L. Martin, 1993. The Water Quality Analysis Simulation Program, WASP5. Part A: Model Documentation. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Athens, Georgia.Google Scholar
  2. Ammerman, J. W., 1992. Seasonal variation in phosphate turnover in the Mississippi River plume and the inner Gulf shelf: rapid summer turnover. In Proceedings, Nutrient Enhanced Coastal Ocean Productivity Workshop. Publ. No. TAMU-SG-92-109, Texas Sea Grant College Program, Texas A&M University, College Station, Texas: 69-75Google Scholar
  3. Ammerman, J. W., W. B. Glover, R. H. S. Ruvalcaba & J. J. D. MacRae, 1995. Continuous underway measurement of microbial enzyme activities in surface waters of the Mississippi River plume and the Louisiana shelf. In Proceedings of 1994 Synthesis Workshop, Nutrient-Enhanced Coastal Ocean Productivity Program, Baton, Rouge LA, Louisiana Sea Grant College Program, Louisiana State University, Baton Rouge, Louisiana: 1-8.Google Scholar
  4. Andersson, L. & L. Rydberg, 1988. Trends in nutrient and oxygen conditions within the Kattegat: effects on local nutrient supply. Estuar. coast. shelf Sci. 26: 559-579.Google Scholar
  5. Bemmett, E. A., S. R. Carpenter & N. F. Caraco, 2001. Human impact on erodable phosphorus and eutrophication: a global perspective. BioScience 51: 227-234.Google Scholar
  6. Bienfang, P. K., P. J. Harrison & L. M. Quarmby, 1982. Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms. Mar. Biol. 67: 295-302.Google Scholar
  7. Bierman, Jr., V. J., S. C. Hinz, D. Zhu, W. J. Wiseman, Jr., N. N. Rabalais & R. E. Turner, 1994. A preliminary mass balance model of primary productivity and dissolved oxygen in the Mississippi River Plume/Inner Gulf shelf region. Estuaries 17: 886-899.Google Scholar
  8. Bierman, Jr., V. J., S. C. Hinz, K. A. Nelson, D. P. Podber, D.-W. Zhu, W. J. Wiseman, Jr., N. N. Rabalais & R. E. Turner, 1999. Modeling. In Wiseman, Jr., W. J., N. N. Rabalais, M. J. Dagg & T. E. Whitledge (eds), Nutrient Enhanced Coastal Ocean Productivity in the Northern Gulf of Mexico. NOAA Coastal Ocean Program, Decision Analysis Series No. 14. U.S. Department of Commerce, National Ocean Service, Center for Sponsored Coastal Research, Silver Spring, Maryland: 103-125.Google Scholar
  9. Bode, A. & Q. Dortch, 1996. Uptake and regeneration of inorganic nitrogen in coastal waters influenced by the Mississippi River: spatial and seasonal variations. J. Plankton Res. 18: 2251-2268.Google Scholar
  10. Boesch, D. F. & R. B. Brinsfield, 2000. Coastal eutrophication and agriculture: contributions and solutions. In Balázs, E., E. Galante, J. M. Lynch, J. S. Schepers, J.-P. Toutant, E. Werner & P. A. Th. J. Werry (eds), Biological Resource Management: Connection Science and Policy. Springer, Berlin: 93-115.Google Scholar
  11. Boesch, D. F., R. B. Brinsfield & R. E. Magnien, 2001. Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. J. Environ. Qual. 30: 303-320.Google Scholar
  12. Bratkovich, A, S. P. Dinnel & D. A. Goolsby, 1994. Variability and prediction of freshwater and nitrate fluxes for the Louisiana-Texas shelf: Mississippi and Atchafalaya River source functions. Estuaries 17: 766-778.Google Scholar
  13. Brezonik, P. L., V. J. Bierman, Jr., R. Alexander, J. Anderson, J. Barko, M. Dortch, L. Hatch, G. L. Hitchcock, D. Keeney, D. Mulla, V. Smith, C. Walker, T. Whitledge & W. J. Wiseman, Jr., 1999. Effects of Reducing Nutrient Loads to Surface Waters within theMississippi River Basin and the Gulf ofMexico. Topic 4 Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No. 18, NOAA Coastal Ocean Program, Silver Springs, Maryland: 130 pp.Google Scholar
  14. Butler, M. & H. G. Dam, 1994. Production rates and characteristics of fecal pellets of the copepod Acartia tonsa under simulated phytoplankton bloom conditions: implications for vertical fluxes. Mar. Ecol. Progr. Ser. 114: 81-91.Google Scholar
  15. Caraco, N. F. & J. J. Cole, 1999. Human impact on nitrate export: An analysis using major world rivers. Ambio 28: 167-170.Google Scholar
  16. Cerco, C. F., 1995. Response of Chesapeake Bay to nutrient load reductions. J. Envir. Eng. 121: 549-557.Google Scholar
  17. Conley, D. J., C. L. Schelske & E. F. Stoermer, 1993. Modification of the biogeochemical cycle of silica with eutrophication. Mar. Ecol. Progr. Ser. 101: 179-192.Google Scholar
  18. Cooper, S. R. & G. R. Brush, 1991. Long-term history of Chesapeake Bay anoxia. Science 254: 992-996.Google Scholar
  19. Corner, E. D., R. N. Head & C. C. Kilvington, 1972. On the nutrition and metabolism of zooplankton. 8. The grazing of Biddulphia cells by Calanus helgolandicus. J. mar. biol. Ass. U.K. 52: 847-861.Google Scholar
  20. D'Elia, C. J., J. G. Sanders & W. R. Boynton, 1986. Nutrient enrichment studies in a coastal plain estuary: phytoplankton growth in large-scale, continuous cultures. Can. J. aquat. Fish. Sci. 43: 397-406.Google Scholar
  21. DeMaster, D. J., G. B. Knapp & C. A. Nittrouer, 1986. Effect of suspended sediments on geochemical processes near the mouth of the Amazon River: examination of biogenic silica uptake and the fate of particle-reactive elements. Continental Shelf Res. 6: 107-125.Google Scholar
  22. Diaz, R. J. & R. Rosenberg, 1995. Marine benthic hypoxia: a areview of its ecological effects and behaavioral responses of benthic macrofauna. Oceanogr. mar. biol. Ann. Rev. 33: 245-303.Google Scholar
  23. DiToro, D. M., N. A. Thomas, C. E. Herdendorf, R. P. Winfield & J. P. Connolly, 1987. A post-audit of a Lake Erie eutrophication model. J. Great Lakes Res. 13: 801-825.Google Scholar
  24. Dortch, Q., 1994. Changes in phytoplankton numbers and species composition. In Dowgiallo, M. J. (ed.), Coastal Oceanographic Effects of Summer 1993 Mississippi River Flooding. Special National Oceanic and Atmospheric Administration Report, NOAA Coastal Ocean Office/National Weather Service, Silver Spring, Maryland: 46-49.Google Scholar
  25. Dortch, Q., 1998. Phytoplankton characteristics. In Murray, S. P. (ed.), An Observational Study of the Mississippi-Atchafalaya Coastal Plume. Final Report. OCS Study MMS 98-0040. U.S. Dept. of Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, Louisiana: 239-268.Google Scholar
  26. Dortch, Q. & T. E. Whitledge, 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Res. 12: 1293-1309.Google Scholar
  27. Dortch, Q., N. N. Rabalais, R. E. Turner & D. M. Nelson, 1997. Louisiana shelf: silicon availability, phytoplankton species composition, vertical flux and hypoxia. Invited, ASLO annual meeting, 10-14 February, 1997, Santa Fe, New Mexico (abstract).Google Scholar
  28. Dortch, Q., N. N. Rabalais, R. E. Turner & N. A. Qureshi, 2001. Impacts of changing Si/N ratios and phytoplankton species composition. In Rabalais, N. N. & R. E. Turner (eds), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies, American Geophysical Union, Washington, D.C.: 37-48.Google Scholar
  29. Dortch, Q., D. Milsted, N. N. Rabalais, S. E. Lohrenz, D. G. Redalje, M. J. Dagg, R. E. Turner & T. E. Whitledge, 1992. Role of silicate availability in phytoplankton species composition and the fate of carbon. In Proceedings, Nutrient Enhanced Coastal Ocean Productivity Workshop. Publ. No. TAMU-SG-92-109, Texas Sea Grant College Program, Texas A&M University, College Station, Texas: 76-83.Google Scholar
  30. Dunn, D. D., 1996. Trends in Nutrient Inflows to the Gulf ofMexico from Streams Draining the Conterminous United States 1972-1993. U.S. Geological Survey, Water-Resources Investigations Report 96-4113. Prepared in cooperation with the U.S. Environmental Protection Agency, Gulf of Mexico Program, Nutrient Enrichment Issue Committee, U.S. Geological Survey, Austin, Texas: 60 pp.Google Scholar
  31. Eadie, B. J., B. A. McKee, M. B. Lansing, J. A. Robbins, S. Metz & J. H. Trefry, 1994. Records of nutrient-enhanced coastal productivity in sediments from the Louisiana continental shelf. Estuaries 17: 754-765.Google Scholar
  32. Fahnenstiel, G. L., M. J. McCormick, G. A. Lang, D. G. Redalje, S. E. Lohrenz, M. Markowitz, B. Wagoner & H. J. Carrick, 1995. Taxon-specific growth and loss rates for dominant phytoplankton populations from the northern Gulf of Mexico. Mar. Ecol. Progr. Ser. 117: 229-239.Google Scholar
  33. Fox, L. E., S. L. Sager & S. C. Wofsy, 1985. Factors controlling the concentrations of soluble phosphorus in the Mississippi estuary. Limnol. Oceanogr. 30: 826-832.Google Scholar
  34. Gardner, W. S., R. Benner, G. Chin-Leo, J. B. Cotner, Jr., B. J. Eadie, J. F. Cavaletto & M. B. Lansing, 1994. Mineralization of organic material and bacterial dynamics in Mississippi River plume water. Estuaries 17: 816-828.Google Scholar
  35. Gardner, W. S., J. F. Cavaletto, J. B. Cotner & J. M. Johnson, 1997. Effects of natural light on nitrogen cycling rates in the Mississippi River plume. Limnol. Oceanogr. 42: 273-281.Google Scholar
  36. Goldman, J. C. & P.M. Glibert, 1983. Kinetics of inorganic nitrogen uptake by phytoplankton. In Carpenter, E. J. & D. G. Capone (eds), Nitrogen in Marine Environment. Academic Press, New York: 223-274Google Scholar
  37. Goolsby, D. A., 2000. Mississippi Basin nitrogen flux believed to cause Gulf hypoxia, Eos, Trans. am. Geophys. Union 81: 325-327.Google Scholar
  38. Goolsby, D. A., W. A. Battaglin, G. B. Lawrence, R. S. Artz, B. T. Aulenbach, R. P. Hooper, D. R. Keeney & G. J. Stensland, 1999. Flux and Sources of Nutrients in the Mississippi-Atchafalaya River Basin, Topic 3 Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No. 17, NOAA Coastal Ocean Program, Silver Springs, Maryland: 130 pp.Google Scholar
  39. Harris, G. P., 1986. Plankton Ecology: Structure, Function and Fluctuations. Chapman and Hall, New York.Google Scholar
  40. Harrison, P. J., H. L. Conway, R. W. Holmes & C. O. Davis, 1977. Marine diatoms in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of three diatoms. Mar. Biol. 43: 19-31.Google Scholar
  41. Heckey, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796-822.Google Scholar
  42. Hickel, W., P. Mangelsdorf & J. Berg, 1993. The human impact in the German Bight: eutrophication during three decades (1962-1991). Helgolanderwiss Meeresunters 47: 243-263.Google Scholar
  43. Hitchcock, G. L., W. J. Wiseman, Jr., W. C. Boicourt, A. J. Mariano, N. Walker, T. A. Nelsen & E. Ryan, 1997. Property fields in an effluent plume of the Mississippi River. J. mar. Syst. 12: 109-126.Google Scholar
  44. Holland, A. F., A. T. Shaughnessy & M. H. Hiegel, 1987. Longterm variation in the mesohaline Chesapeake Bay macrobenthos: Spatial and temporal patterns. Estuaries 10: 370-278.Google Scholar
  45. Howarth, R.W., 1998. An assessment of human influences on fluxes of nitrogen from the terrestrial landscape to the estuaries and continental shelves of the North Atlantic Ocean. Nutrient Cycling in Agroecosystems 52: 213-223.Google Scholar
  46. Howarth, R.W., H. S. Jensen, R. Marino & H. Postma, 1995. Transport to and processing of P in near-shore and oceanic waters. In Tiessen, H. (ed.), Phosphorus in the Global Environment. SCOPE 54, John Wiley & Sons Ltd., Chichester: 323-356.Google Scholar
  47. Howarth, R. W., G. Billen, D. Swaney, A Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. E. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch & Z.-L. Zhu, 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35: 75-139.Google Scholar
  48. Justic, D., T. Legovic & L. Rottini-Sandrini, 1987. Trend in the oxygen content 1911-1984 and occurrence of benthic mortality in the northern Adriatic Sea. Estuar. coast. shelf Sci. 25: 435-445.Google Scholar
  49. Justic, D., N. N. Rabalais, R. E. Turner & W. J. Wiseman, Jr., 1993. Seasonal coupling between riverborne nutrients, net productivity and hypoxia. Mar. Pollut. Bull. 26: 184-189.Google Scholar
  50. Justic, D., N. N. Rabalais & R. E. Turner, 1994. Riverborne nutrients, hypoxia and coastal ecosystem evolution: biological responses to long-term changes in nutrient loads carried by the Po and the Mississippi Rivers. In Dyer, K. R. & R. J. Orth (eds), Changes in Fluxes in Estuaries: Implications from Science toManagement. Proceedings of ECSA22/ERF Symposium, International Symposium Series, Olsen & Olsen, Fredensborg, Denmark: 161-167.Google Scholar
  51. Justic, D., N. N. Rabalais & R. E. Turner, 1995a. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar. Pollut. Bull. 30: 41-46.Google Scholar
  52. Justic, D., N. N. Rabalais, R. E. Turner & Q. Dortch, 1995b. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuar. coast. shelf Sci. 40: 339-356.Google Scholar
  53. Justic, D., N. N. Rabalais & R. E. Turner, 1996. Effects of climate change on hypoxia in coastal waters: a doubled CO2 scenario for the northern Gulf of Mexico. Limnol. Oceanogr. 41: 992-1003.Google Scholar
  54. Justic, D., N. N. Rabalais & R. E. Turner, 1997. Impacts of climate change on net productivity of coastal waters: implications for carbon budget and hypoxia. Climate Res. 8: 225-237.Google Scholar
  55. Limno-Tech, 1995. Estimated Responses of Water Quality on the Louisiana Inner Shelf to Nutrient Load Reductions in the Mississippi and Atchafalaya Rivers. U.S. Environmental Protection Agency, Gulf of Mexico Program, Stennis Space Center, Mississippi: 48 pp. Plus appendices.Google Scholar
  56. Lohrenz, S. E., M. J. Dagg & T. E. Whitledge, 1990. Enhanced primary production at the plume/oceanic interface of the Mississippi River. Continental Shelf Res. 10: 639-664.Google Scholar
  57. Lohrenz, S. E., G. L. Fahnenstiel & D. G. Redalje, 1994. Spatial and temporal variations in photosynthesis parameters in relation to environmental conditions in coastal waters of the northern Gulf of Mexico. Estuaries 17: 779-795.Google Scholar
  58. Lohrenz, S. E., D. A. Wiesenburg, R. A. Arnone & X. Chen, 1999b. What controls primary production in the Gulf of Mexico? In Sherman, K., H. Kumpf & K. Steidinger (eds), The Gulf of Mexico Large Marine Ecosystem, Assessment, Sustainability, and Management. Blackwell Science, Malden, Massachusetts: 151-170.Google Scholar
  59. Lohrenz, S. E., G. L. Fahnenstiel, D. G. Redalje, G. A. Lang, X. Chen & M. J. Dagg, 1997. Variations in primary production of northern Gulf of Mexico continental shelf waters linked to nutrient inputs from the Mississippi River. Mar. Ecol. Progr. Ser. 155: 435-454.Google Scholar
  60. Lohrenz, S. E., G. L. Fahnenstiel, D. G. Redalje, G. A. Lang, M. J. Dagg, T. E. Whitledge & Q. Dortch, 1999a. The interplay of nutrients, irradiance and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume. Continental Shelf Res. 19: 1113-1141.Google Scholar
  61. Lopez-Veneroni, D. & L. A. Cifuentes, 1994. Transport of dissolved organic nitrogen inMississippi River plume and Texas-Louisiana continental shelf near-surface waters. Estuaries 17: 796-808.Google Scholar
  62. Nelsen, T. A., P. Blackwelder, T. Hood, B. McKee, N. Romer, C. Alvarez-Zarikian & S. Metz, 1994. Time-based correlation of biogenic, lithogenic and authigenic sediment components with anthropogenic inputs in the Gulf of Mexico NECOP study area. Estuaries 17: 873-885.Google Scholar
  63. Nelson, D. M. & Q. Dortch, 1996. Silicic acid depletion and silicon limitation in the plume of the Mississippi River: evidence from kinetic studies in spring and summer. Mar. Ecol. Progr. Ser. 136: 163-178.Google Scholar
  64. Nixon, S. W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199-219.Google Scholar
  65. Meade, R. H. (ed.), 1995. Contaminants in the Mississippi River, 1987-1992. U.S. Geological Survey Circular 1133, U.S. Dept. of the Interior, U.S. Geological Survey, Denver, Colorado: 140 pp.Google Scholar
  66. Mee, L. D., 2001. Eutrophication in the Black Sea and a basin-wide approach to its control. In von Bodungen, B. & R. K. Turner (eds), Science and Integrated Coastal Management. Dahlem University Press, Berlin: 71-91.Google Scholar
  67. Milliman, J. D. & R. H. Meade, 1983. World-wide delivery of river sediment to the ocean. J. Geol. 91: 1-21.Google Scholar
  68. Nelson, D. M. & M. A. Brzezinski, 1990. Kinetics of silicic acid uptake by natural diatom assemblages in two Gulf Stream warmcore rings. Mar. Ecol. Progr. Ser. 62: 283-292.Google Scholar
  69. Officer, C. B. & J. H. Ryther, 1980. The possible importance of silicon in marine eutrophication. Mar. Ecol. Progr. Ser. 3: 83-91.Google Scholar
  70. Pakulski, J. D., R. Benner, R. Amon, B. Eadie & T. Whitledge, 1995. Community metabolism and nutrient cycling in the Mississippi River plume: evidence for intense nitrification at intermediate salinities. Mar. Ecol. Progr. Ser. 117: 207-218.Google Scholar
  71. Peierls, B. L., N. Caraco, M. Pace & J. Cole, 1991. Human influence on river nitrogen. Nature 350: 386-387.Google Scholar
  72. Pokryfki, L. & R. E. Randall, 1987. Nearshore hypoxia in the bottom water of the northwestern Gulf of Mexico from 1981 to 1984. Mar. Environ. Res. 22: 75-90.Google Scholar
  73. Qureshi, N. A., 1995. The role of fecal pellets in the flux of carbon to the sea floor on a river-influenced continental shelf subject to hypoxia. Ph.D. Dissertation, Department of Oceanography & Coastal Sciences, Louisiana State University, Baton Rouge: 255 pp.Google Scholar
  74. Rabalais, N. N., 2002. The potential for nutrient overenrichment to diminish marine biodiversity. In Norse, E. A. & L. B. Crowder (eds), Marine Conservation Biology: The Science of Maintaining the Sea's Biodiversity, Island Press, Washington, D.C. In press.Google Scholar
  75. Rabalais, N. N. & R. E. Turner, 1998. Pigment and nutrient distributions. In Murray, S. P. (ed.), An Observational Study of the Mississippi-Atchafalaya Coastal Plume. Final Report. OCS Study MMS 98-0040. U.S. Dept. of Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, Louisiana: 208-230.Google Scholar
  76. Rabalais, N. N. & R. E. Turner, 2001. Hypoxia in the Northern Gulf of Mexico: Description, causes and change. In Rabalais, N. N. & R. E. Turner (eds), Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies, American Geophysical Union, Washington, D.C.: 1-36.Google Scholar
  77. Rabalais, N. N., R. E. Turner & W. J. Wiseman, Jr., 1992. Distribution and characteristics of hypoxia on the Louisiana shelf in 1990 and 1991. In Proceedings, Nutrient Enhanced Coastal Ocean Productivity Workshop. Publ. No. TAMU-SG-92-109, Texas Sea Grant College Program, Texas A&MUniversity, College Station, Texas: 15-20.Google Scholar
  78. Rabalais, N. N., W. J. Wiseman, Jr. & R. E. Turner, 1994. Comparison of continuous records of near-bottom dissolved oxygen from the hypoxia zone of Louisiana. Estuaries 17: 850-861.Google Scholar
  79. Rabalais, N. N., R. E. Turner, W. J. Wiseman, Jr. & D. F. Boesch, 1991. A brief summary of hypoxia on the northern Gulf of Mexico continental shelf: 1985-1988. In Tyson, R. V. & T. H. Pearson (eds), Modern and Ancient Continental Shelf Anoxia. Geological Society Special Publication No. 58, The Geological Society, London: 35-46.Google Scholar
  80. Rabalais, N. N., R. E. Turner, W. J. Wiseman, Jr. & Q. Dortch, 1998. Consequences of the 1993 Mississippi River flood in the Gulf of Mexico. Regulated Rivers: Res. & Mgt. 14: 161-177.Google Scholar
  81. Rabalais, N. N., R. E. Turner, D. Justic, Q. Dortch, W. J. Wiseman, Jr. & B. K. Sen Gupta, 1996. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19: 386-407.Google Scholar
  82. Rabalais, N. N., R. E. Turner, D. Justic, Q. Dortch & W. J. Wiseman, Jr., 1999. Characterization of hypoxia: Topic 1 Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No. 15, NOAA Coastal Ocean Program, Silver Springs, Maryland: 167 pp.Google Scholar
  83. Redfield, A. C., 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205-222.Google Scholar
  84. Redalje, D. G., S. E. Lohrenz & G. L. Fahnenstiel, 1994. The relationship between primary production and the vertical export of particulate organic matter in a river-impacted coastal ecosystem. Estuaries 17: 829-838.Google Scholar
  85. Rhee, G. Y., 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9: 495-506.Google Scholar
  86. Sen Gupta, B. K., R. E. Turner & N. N. Rabalais, 1996. Seasonal oxygen depletion in continental-shelf waters of Louisiana: historical record of benthic foraminifers. Geology 24: 227-230.Google Scholar
  87. Sklar, F. H. & R. E. Turner, 1981. Characteristics of phytoplankton production off Barataria Bay in an area influenced by the Mississippi River. Contrib. mar. Sci. 24: 93-106.Google Scholar
  88. Smith, W. O. & D. J. Demaster, 1996. Phytoplankton biomass and productivity in the Amazon River plume: correlation with seasonal river discharge. Continental Shelf Res. 16: 291-319.Google Scholar
  89. Smith, R. A., R. B. Alexander & M. G. Wolman, 1987. Waterquality trends in the nation's rivers. Science 235: 1605-1615.Google Scholar
  90. Suess, E., 1980. Particulate organic carbon flux in the oceans: surface productivity and oxygen utilization. Nature 288: 260-263.Google Scholar
  91. Thomas, W. H. & E. G. Simmons, 1960. Phytoplankton production in the Mississippi River Delta. In Shepard, F. P. (ed.), Recent Sediments, Northwest Gulf of Mexico. American Association of Petroleum Geologists, Tulsa, Oklahoma: 103-116.Google Scholar
  92. Tolmazin, R., 1985. Changing coastal oceanography of the Black Sea. I. Northwestern shelf. Prog. Oceanogr. 15: 2127-276.Google Scholar
  93. Turner, R. E. & R. L. Allen, 1982. Plankton respiration in the bottom waters of the Mississippi River Delta Bight. Contrib. mar. Sci. 25: 173-179.Google Scholar
  94. Turner, R. E. & N. N. Rabalais, 1991. Changes in Mississippi River water quality this century. Implications for coastal food webs. BioScience 41: 140-148.Google Scholar
  95. Turner, R. E. & N. N. Rabalais, 1994a. Coastal eutrophication near the Mississippi river delta. Nature 368: 619-621.Google Scholar
  96. Turner, R. E. & N. N. Rabalais, 1994b. Changes in the Mississippi River nutrient supply and offshore silicate-based phytoplankton community responses. In Dyer, K. R. & R. J. Orth (eds), Changes in Fluxes in Estuaries: Implications from Science to Management. Proceedings of ECSA22/ERF Symposium, International Symposium Series, Olsen & Olsen, Fredensborg, Denmark: 147-150.Google Scholar
  97. Turner, R. E. & N. N. Rabalais, 1998. Bottom water respiration rates in the hypoxia zone within the Louisiana Coastal Current. In Murray, S. P. (ed.), An Observational Study of theMississippi-Atchafalaya Coastal Plume. Final Report. OCS Study MMS 98-0040. U.S. Dept. of Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, Louisiana: 354-364.Google Scholar
  98. Turner, R. E., N. N. Rabalais & Z.-N. Zhang, 1990. Phytoplankton biomass, production and growth limitations on the Huanghe (Yellow River) continental shelf. Continental Shelf Res. 10: 545-571.Google Scholar
  99. Turner, R. E., N. Qureshi, N. N. Rabalais, Q. Dortch, D. Justic, R. F. Shaw & J. Cope, 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proc. natn. Acad. Sci. U.S.A. 95: 13048-13051.Google Scholar
  100. Valiela, I., 1984. Marine Ecological Processes. Springer Verlag, New York: 517 pp.Google Scholar
  101. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger & D. G. Tilman, 1997. Human alterations of the global nitrogen cycle: sources and consequences. Ecol. Applic. 7: 737-750.Google Scholar
  102. Wiseman, Jr., W. J., N. N. Rabalais, R. E. Turner, S. P. Dinnel & A. MacNaughton, 1997. Seasonal and interannual variability within the Louisiana Coastal Current: Stratification and hypoxia. J. mar. Syst. 12: 237-248.Google Scholar
  103. Xiuren, N., D. Vaulot, L. Zhensheng & L. Zilin, 1988. Standing stock and production of phytoplankton in the estuary of the Changjiang (Yangtse) River and the adjacent East China Sea. Mar. Ecol. Progr. Ser. 49: 141-150.Google Scholar
  104. Zaitsev, Y. P., 1992. Recent changes in the trophic structure of the Black Sea. Fisheries Oceanogr. 1: 180-189.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Nancy N. Rabalais
    • 1
  • R. Eugene Turner
    • 2
  • Quay Dortch
    • 1
  • Dubravko Justic
    • 2
  • Victor J. BiermanJr.
    • 3
  • William J. WisemanJr.
    • 4
  1. 1.Louisiana Universities Marine ConsortiumChauvinU.S.A
  2. 2.Coastal Ecology Institute and Department of Oceanography & Coastal SciencesLouisiana State UniversityBaton RougeU.S.A
  3. 3.Limno-Tech, Inc.GreensboroU.S.A
  4. 4.Coastal Studies Institute and Department of Oceanography & Coastal SciencesLouisiana State UniversityBaton RougeU.S.A

Personalised recommendations