Skip to main content
Log in

On the Occurrence of Mass in Field Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper proves that it is possible to build a Lagrangian for quantum electrodynamics which makes it explicit that the photon mass is eventually set to zero in the physical part on observational ground. Gauge independence is achieved upon considering the joint effect of gauge-averaging term and ghost fields. It remains possible to obtain a counterterm Lagrangian where the only non-gauge-invariant term is proportional to the squared divergence of the potential, while the photon propagator in momentum space falls off like k −2 at large k which indeed agrees with perturbative renormalizability. The resulting radiative corrections to the Coulomb potential in QED are also shown to be gauge-independent. The experience acquired with quantum electrodynamics is used to investigate properties and problems of the extension of such ideas to non-Abelian gauge theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Phys. Rev. Lett. 13, 508 (1964); ''Spontaneous symmetry breakdown without massless bosons,” Phys. Rev. 145, 1156 (1966).

    Google Scholar 

  2. S. Heinemeyer and G. Weiglein, “Higgs-mass predictions and electroweak precision observables in the standard model and the MSSM,” Nucl. Phys. Proc. Suppl. 89, 216 (2000).

    Google Scholar 

  3. S. L. Glashow, “Towards a unified theory: threads in a tapestry,” Rev. Mod. Phys. 52, 539 (1980).

    Google Scholar 

  4. A. Salam, “Grand unification of fundamental forces,” Rev. Mod. Phys. 52, 525 (1980).

    Google Scholar 

  5. S. Weinberg, “Conceptual foundations of the unified theory of weak and electromagnetic interactions,” Rev. Mod. Phys. 52, 515 (1980).

    Google Scholar 

  6. B. S. DeWitt, Dynamical Theory of Groups and Fields (Gordon & Breach, New York, 1965).

    Google Scholar 

  7. B. S. DeWitt, “The space-time approach to quantum field theory,” in Relativity, Groups and Topology II, B. S. DeWitt and R. L. Stora, eds. (North-Holland, Amsterdam, 1984).

    Google Scholar 

  8. I. G. Avramidi and G. Esposito, “Gauge theories on manifolds with boundary,” Commun. Math. Phys. 200, 495 (1999).

    Google Scholar 

  9. G. Esposito, “Non-local boundary conditions in Euclidean quantum gravity,” Class. Quantum Grav. 16, 1113 (1999).

    Google Scholar 

  10. G. Esposito, “New kernels in quantum gravity,” Class. Quantum Grav. 16, 3999 (1999).

    Google Scholar 

  11. G. Esposito and C. Stornaiolo, “Non-locality and ellipticity in a gauge-invariant quantization,” Int. J. Mod. Phys. A 15, 449 (2000).

    Google Scholar 

  12. G. Esposito, “Boundary operators in quantum field theory,” Int. J. Mod. Phys. A 15, 4539 (2000).

    Google Scholar 

  13. L. Lorenz, “On the identity of the vibrations of light with electrical currents,” Phil. Mag. 34, 287 (1867). E. T. Whittaker, The History of the Theories of Aether and Electricity (Longman, London, 1910).

    Google Scholar 

  14. P. K. Townsend, “Cosmological constant in supergravity,” Phys. Rev. D 15, 2802 (1977).

    Google Scholar 

  15. C. Becchi, A. Rouet, and R. Stora, “Renormalization of the Abelian Higgs-Kibble model,” Commun. Math. Phys. 42, 127 (1975).

    Google Scholar 

  16. C. Becchi, A. Rouet, and R. Stora, “Renormalization of gauge theories,” Ann. Phys. (N. Y.) 98, 287 (1976).

    Google Scholar 

  17. B. S. DeWitt, “Quantum gravity: The new synthesis,” in General Relativity, an Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  18. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1989). S. Weinberg, The Quantum Theory of Fields. Vol. I (Cambridge University Press, Cambridge, 1996). R. Ticciati, Quantum Field Theory for Mathematicians (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  19. J. H. Lowenstein and B. Schroer, “Gauge invariance and Ward identities in a massivevector-meson model,” Phys. Rev. D 6, 1553 (1972). C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1985).

    Google Scholar 

  20. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quantum Theory, Vol. 4 of Course of Theoretical Physics (Pergamon Press, Oxford, 1971). V. N. Gribov and J. Nyiri, Quantum Electrodynamics (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  21. L. D. Faddeev and V. Popov, “Feynman diagrams for the Yang-Mills field,” Phys. Lett. B 25, 29 (1967).

    Google Scholar 

  22. A. S. Goldhaber and M. M. Nieto, “Terrestrial and extraterrestrial limits on the photon mass,” Rev. Mod. Phys. 43, 277 (1971).

    Google Scholar 

  23. J. V. Hollweg, “Improved limit on photon rest mass,” Phys. Rev. Lett. 32, 961 (1974).

    Google Scholar 

  24. L. Davis Jr., A. S. Goldhaber, and M. M. Nieto, “Limit on the photon mass deduced from Pioneer-10 observation's of Jupiter's magnetic field,” Phys. Rev. Lett. 35, 1402 (1975).

    Google Scholar 

  25. G. W. Wilson, “High Mass Photon Pairs at LEP,” in Marseille 1993, High Energy Physics (1993) 285.

  26. J. T. Mendonca, A. M. Martins, and A. Guerreiro, “Field quantization in a plasma: Photon mass and charge,” Phys. Rev. E 62, 2989 (2000).

    Google Scholar 

  27. P. Abreu et al., “Search for the standard model Higgs boson at LEP in the year 2001,” Phys. Lett. B 499, 23 (2001).

    Google Scholar 

  28. J. Ellis, G. Ganis, D. V. Nanopoulos, and K. A. Olive, “What if the Higgs boson weighs 115 GeV?,” Phys. Lett. B 502, 171 (2001).

    Google Scholar 

  29. M. Acciarri et al., “Search for neutral Higgs bosons of the minimal supersymmetric standard model in e+e- interactions at 's=192–202 GeV,” Phys. Lett. B 503, 21 (2001).

    Google Scholar 

  30. M. Acciarri et al., “Search for the standard model Higgs boson in e+e--collisions at 's up to 202 GeV,” Phys. Lett. B 508, 225 (2001).

    Google Scholar 

  31. P. Achard et al., “Standard model Higgs boson with the L3 experiment at LEP,” Phys. Lett. B 517, 319 (2001).

    Google Scholar 

  32. J. Erler, “The probability density of the Higgs boson mass,” Phys. Rev. D 63, 071301 (2001).

    Google Scholar 

  33. V. N. Gribov, “Quantization of non-Abelian gauge theories,” Nucl. Phys. B 139, 1 (1978).

    Google Scholar 

  34. V. N. Gribov, “Higgs and top quark masses in the standard model without elementary Higgs boson,” Phys. Lett. B 336, 243 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, G. On the Occurrence of Mass in Field Theory. Foundations of Physics 32, 1459–1483 (2002). https://doi.org/10.1023/A:1020363907605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020363907605

Navigation