Advertisement

Positivity

, Volume 6, Issue 3, pp 275–296 | Cite as

The Marginal Pricing Rule in Economies with Infinitely Many Commodities

  • J.-M. Bonnisseau
Article

Abstract

Clarke's normal cone appears as the right tool to define the marginal pricing rule in finite dimensional commodity space since it allows to consider in the same framework convex, smooth as well as nonsmooth nonconvex production sets. Furthermore it has nice continuity and convexity properties. But it is not well adapted for economies with infinitely many commodities since it does satisfy minimal continuity properties. In this paper, we propose an alternative definition of the marginal pricing rule. It allows us to prove the second welfare theorem and the existence of marginal pricing equilibria for economies with several producers under assumptions similar to the one used for economies with a finite set of commodities. Our approach is sufficiently general to take into account the convex and the smooth cases for which our definition of the marginal pricing rule coincides with the one given by the Clarke's normal cone or the normal cone of convex analysis.

General equilibrium increasing returns infinitely many commodities marginal pricing rule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beato, P. and Mas-Colell A.: On the marginal cost pricing with given tax-subsidy rules, Journal of Economic Theory 37(1985), 356-365.Google Scholar
  2. 2.
    Benoist, J.: Ensembles de production non convexes et théorie de l'équilibre général, Thèse de doctorat, Université de Paris 1 Panthéon-Sorbonne, Paris, 1990.Google Scholar
  3. 3.
    Bewley, T.: Existence of equilibria in economies with Infinitely Many Commodities, Journal of Economic Theory 4 (1972), 514-540.Google Scholar
  4. 4.
    Bonnisseau, J.-M. and Cornet B.: Existence of equilibrium when firms follow bounded losses pricing rules, Journal of Mathematical Economics 17 (1988), 119-147.Google Scholar
  5. 5.
    Bonnisseau, J.-M. and Cornet B.: Valuation equilibrium and Pareto optimum in non-convex economies, Journal of Mathematical Economics 17 (1988), 293-308.Google Scholar
  6. 6.
    Bonnisseau, J.-M. and Cornet B.: Existence of marginal cost pricing equilibria in an economy with several non convex firms, Econometrica 58 (1990), 661-682.Google Scholar
  7. 7.
    Bonnisseau, J.-M. and Cornet B.: Existence of marginal cost pricing equilibria: the nonsmooth case, International Economic Review 31 (1990), 685-708.Google Scholar
  8. 8.
    Bonnisseau, J.-M. and Meddeb M.: Existence of equilibria in economies with increasing returns and infinitely many commodities, Journal of Mathematical Economics 31 (1999), 287-307.Google Scholar
  9. 9.
    Brown, D. J.: Equilibrium analysis with non-convex technologies, in W. Hildenbrand and H. Sonnenschein (eds), Handbook of Mathematical Economics, Vol. IV, North-Holland, Amsterdam, 1991, pp. 1963-995.Google Scholar
  10. 10.
    Clarke, F.: Optimization and Nonsmooth Analysis, Wiley, New York, 1983.Google Scholar
  11. 11.
    Cornet, B.: The second welfare theorem in nonconvex economies, CORE Discussion Paper 8630, Université Catholique de Louvain-la-Neuve, Louvain-la-Neuve, 1986.Google Scholar
  12. 12.
    Cornet, B.: Topological properties of the attainable set in a non-convex economy, Journal of Mathematical Economics 17 (1988), 275-292.Google Scholar
  13. 13.
    Cornet, B.: Existence of equilibria in economies with increasing returns, in: B. Cornet and H. Tulkens (eds), Contribution to Operation Research and Economics: the Twentieth Anniversary of CORE, MIT Press, Cambridge, MA, 1990.Google Scholar
  14. 14.
    Cornet, B.: Marginal cost pricing and Pareto optimality, in: P. Champsaur, J.M. Grandmont and M. Deleau (eds), Essays in Honor of Edmond Malinvaud: Empirical Economics, MIT Press, Cambridge, MA, 1991, pp. 13-52.Google Scholar
  15. 15.
    Debreu, G.: Theory of Value, Wiley, New York, 1959.Google Scholar
  16. 16.
    Guesnerie, R.: Pareto-optimality in nonconvex economies, Econometrica 43 (1975), 1-29.Google Scholar
  17. 17.
    Hotelling, H.: The general welfare in relation to problems of taxation and of railway and utility rates, Econometrica 6 (1938), 242-269.Google Scholar
  18. 18.
    Jofré, A. and Rivera, J.: A nonconvex separation property and some applications, Mathematical Programming, in press (2002).Google Scholar
  19. 19.
    Jouini, E.: A remark on Clarke's normal cone and the marginal cost pricing rule, Journal of Mathematical Economics 17 (1988), 309-315.Google Scholar
  20. 20.
    Kamiya, K.: On the survival assumption in marginal cost pricing, Journal of Mathematical Economics 17 (1988), 261-273.Google Scholar
  21. 21.
    Khan, M. A.: The Nordukhovich normal cone and the foundations of welfare economics, Journal of Public Economic Theory 1 (1999), 309-338.Google Scholar
  22. 22.
    Khan, M. A. and Vohra R.: An extension of the second welfare theorem to economies with non-convexities and public goods, Quarterly Journal of Economics 102 (1987), 223-241.Google Scholar
  23. 23.
    Khan, M. A. and Vohra R.: Pareto-optimal allocations of nonconvex economies in locally convex spaces, Nonlinear Analysis 12 (1988), 943-950.Google Scholar
  24. 24.
    Mas-Colell, A. and Zame, W. R.: Equilibrium theory in infinite dimensional spaces, in: W. Hildenbrand and H. Sonnenschein (eds), Handbook of Mathematical Economics, Vol. IV, North-Holland, Amsterdam, 1991, pp. 1836-1898.Google Scholar
  25. 25.
    Quinzii, M.: Increasing Returns and Efficiency, Oxford University Press, Oxford, 1992.Google Scholar
  26. 26.
    Shannon, C.: Increasing Returns in infinite-horizon economies, Review of Economic Studies 64 (1997), 73-96.Google Scholar
  27. 27.
    Yun, K. K.: Pareto optimality in non-convex economies and marginal cost pricing equilibria, in: Proceedings of the First International Conference of Korean Economists, 1984.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J.-M. Bonnisseau
    • 1
  1. 1.CERMSEM, Maison des Sciences EconomiquesUniversité Paris IParis Cedex 13France

Personalised recommendations