Advertisement

Positivity

, Volume 6, Issue 3, pp 331–358 | Cite as

History Path Dependent Optimal Control and Portfolio Valuation and Management

  • J.-P. Aubin
  • G. Haddad
Article

Abstract

Regarding the evolution of financial asset prices governed by an history dependent (path dependent) dynamical system as a prediction mechanism, we provide in this paper the dynamical valuation and management of a portfolio (replicating for instance European, American and other options) depending upon this prediction mechanism (instead of an uncertain evolution of prices, stochastic or tychastic). The problem is actually set in the format of a viability/capturability theory for history dependent control systems and some of their results are then transferred to the specific examples arising in mathematical finance or optimal control. They allow us to provide an explicit formula of the valuation function and to show that it is the solution of a ``Clio Hamilton–Jacobi–Bellman'' equation. For that purpose, we introduce the concept of Clio derivatives of ``history functionals'' in such a way we can give a meaning to such an equation. We then obtain the regulation law governing the evolution of optimal portfolios.

Hamilton–Jacobi–Bellman equations history dependent control path dependent control functional differential inclusion viability capturability portfolio valuation portfolio management Clio derivatives chaining of functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J.-P.: Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, Advances in Mathematics, Supplementary Studies, Ed. L. Nachbin. 160-232, 1981.Google Scholar
  2. 2.
    Aubin, J.-P.: Smallest Lyapunov functions of differential inclusions, J. Differential and Integral Equations 2 (1989).Google Scholar
  3. 3.
    Aubin, J.-P.: Viability Theory, Birkhäuser, Berlin and Boston, 1991.Google Scholar
  4. 4.
    Aubin, J.-P.: Boundary-value problems for systems of first-order partial differential inclusions, NoDEA 7 (2000), 61-84.Google Scholar
  5. 5.
    Aubin, J.-P.: Viability kernels and capture basins of sets under differential Inclusions, SIAM J. Control 40 (2001), 853-881.Google Scholar
  6. 6.
    Aubin, J.-P. and Catte, F.: Fixed-point and algebraic properties of viability kernels and capture basins of sets, to appear, Set-Valued Analysis.Google Scholar
  7. 7.
    Aubin, J.-P. and Dordan, O.: Impulsive optimal control and stopping time problems in finite horizon (2001).Google Scholar
  8. 8.
    Aubin, J.-P. and Doss, H.: Dynamic management of portfolios with impulse transactions under tychastic uncertainty, to appear, Stochastics Analysis and Application.Google Scholar
  9. 9.
    Aubin, J.-P. and Doss, H.: Itô and Stratonovitch stochastic viability, 2001.Google Scholar
  10. 10.
    Aubin, J.-P., Pujal, D. and Saint-Pierre, P.: Dynamic management of portfolios with transaction costs under tychastic uncertainty, 2001, preprint.Google Scholar
  11. 11.
    Aubin, J.-P. and Frankowska, H.: Set-Valued Analysis, Birkhäuser, Boston, and Berlin, 1990.Google Scholar
  12. 12.
    Aubin, J.-P. and Haddad, G.: Cadenced runs of impulse and hybrid control systems, International Journal Robust and Nonlinear Control, 2001.Google Scholar
  13. 13.
    Aubin, J.-P. and Haddad, G.: Path-Dependent Impulse and Hybrid Systems, in: Hybrid Systems: Computation and Control, Di Benedetto and E. Sangiovanni-Vincentelli Eds, Di Benedetto & Sangiovanni-Vincentelli Eds, Proceedings of the HSCC 2001 Conference, LNCS 2034, Springer, Berlin, 2001, pp. 119-132.Google Scholar
  14. 14.
    Aubin, J.-P. and Haddad, G.: Detectability under Impulse differential inclusions, preprint.Google Scholar
  15. 15.
    Aubin, J.-P. and Haddad, G.: Co-evolution of asset prices and porfolios of shareholders, in preparation.Google Scholar
  16. 16.
    Bernhard, P.: Une approche déterministe de l'évaluation des options, in Optimal Control and Partial Differential Equations, IOS Press, 2000.Google Scholar
  17. 17.
    Bernhard, P.: A Robust Control Approach to Option Pricing, Cambridge University Press, Cambridge and New York, 2000.Google Scholar
  18. 18.
    Bernhard, P.: Robust control approach to option pricing, including transaction costs, Annals of Dynamic Games (2002).Google Scholar
  19. 19.
    Buckdahn, R., Peng, S., Quincampoix, M. and Rainer, C.: Existence of stochastic control under state constraints, Comptes-Rendus de l'Académie des Sciences 327 (1988), 17-22.Google Scholar
  20. 20.
    Buckdahn, R., Cardaliaguet, P. and Quincampoix, M.: A representation formula for the mean curvature motion, UBO 08, 2000.Google Scholar
  21. 21.
    Cardaliaguet, P., Quincampoix, M. and Saint-Pierre, P.: Contribution à l'étude des jeux différentiels quantitatifs et qualitatifs avec contrainte sur l'état, Comptes-Rendus de l'Académie des Sciences 321 (1995), 1543-1548.Google Scholar
  22. 22.
    Frankowska, H.: L'équation d'Hamilton-Jacobi contingente, Comptes-Rendus de l'Académie des Sciences, PARIS, Série 1 304 (1987), 295-298Google Scholar
  23. 23.
    Frankowska, H.: Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equations IEEE, 26th, CDC Conference, Los Angeles, CA, December 9-11, 1987.Google Scholar
  24. 24.
    Frankowska, H.: Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equations, Applied Mathematics and Optimization 19 (1989), 291-311.Google Scholar
  25. 25.
    Frankowska, H.: Hamilton-Jacobi equation: viscosity solutions and generalized gradients, J. of Math. Analysis and Appl. 141 (1989), 21-26.Google Scholar
  26. 26.
    Frankowska, H.: Lower semicontinuous solutions to Hamilton-Jacobi-Bellman equations, Proceedings of 30th CDC Conference, IEEE, Brighton, December 11-13, 1991.Google Scholar
  27. 27.
    Frankowska, H.: Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equation, SIAM J. on Control and Optimization, 1993.Google Scholar
  28. 28.
    Haddad, G.: Monotone trajectories of differential inclusions with memory, Isr. J. Math. 39 (1981), 83-100.Google Scholar
  29. 29.
    Haddad, G.: Monotone viable trajectories for functional differential inclusions, J. Diff. Eq. 42 (1981), 1-24.Google Scholar
  30. 30.
    Haddad, G.: Topological properties of the set of solutions for functional differential differential inclusions, Nonlinear Anal. Theory, Meth. Appl. 5 (1981), 1349-1366.Google Scholar
  31. 31.
    Peirce, C.: Evolutionary Love, The Monist, 1983.Google Scholar
  32. 32.
    Pujal, D.: Valuation et Gestion Dynamiques de Portefeuilles, Thèse de l'Université de Paris-Dauphine, 2000.Google Scholar
  33. 33.
    Pujal, D. and Saint-Pierre, P.: L'algorithme du bassin de capture appliqué pour évaluer des options européennes, américaines ou exotiques, preprint, 2001.Google Scholar
  34. 34.
    Rockafellar, R. T. and West, R.: Variational Analysis, Springer, Berlin and New York, 1997.Google Scholar
  35. 35.
    Soner, H. M. and Touzi, N.: Super-replication under gamma constraints, SIAM J. Control and Opt. 39 (1998), 73-96.Google Scholar
  36. 36.
    Soner, H. M. and Touzi, N.: Dynamic Programming for a Class of Control Problems, 2000.Google Scholar
  37. 37.
    Soner, H. M. and Touzi, N.: Stochastic target problems, dynamical programming and viscosity solutions, SIAM J. Control. Opt.Google Scholar
  38. 38.
    Soner, H. M. and Touzi, N.: Dynamic programming for stochastic target problems and geometric flows, to appear, J. of the European Mathematical Society.Google Scholar
  39. 39.
    Soner, H. M. and Touzi, N.: A stochastic representation for mean curvature type geometric flows, to appear, preprint.Google Scholar
  40. 40.
    Soner, H. M. and Touzi, N.: Set-valued viscosity solutions and stochastic reachability flows, to appear, preprint.Google Scholar
  41. 41.
    Zabczyk, J.: Chance and decision: stochastic control in discrete time, Quaderni, Scuola Normale di Pisa, 1996.Google Scholar
  42. 42.
    Zabczyk, J.: Stochastic invariance and consistency of financial models, Scuola Normale di Pisa, Preprint, 1999.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J.-P. Aubin
    • 1
  • G. Haddad
    • 2
  1. 1.Paris Cedex 16France
  2. 2.CERMSEM, Maison des Sciences EconomiquesUniversité Paris IParis Cedex 13France

Personalised recommendations