Advertisement

Positivity

, Volume 6, Issue 3, pp 205–241 | Cite as

Economic Equilibrium: Optimality and Price Decentralization

  • C.D. Aliprantis
  • B. Cornet
  • R. Tourky
Article

Abstract

Mathematical economics has a long history and covers many interdisciplinary areas between mathematics and economics. At its center lies the theory of market equilibrium. The purpose of this expository article is to introduce mathematicians to price decentralization in general equilibrium theory. In particular, it concentrates on the role of positivity in the theory of convex economic analysis and the role of normal cones in the theory of non-convex economies.

equilibrium Pareto optimum supporting price properness marginal cost pricing vector lattice ordered vector space Riesz–Kantorovich formula normal cone separation theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliprantis, C.D. and Border, K.C.: Infinite Dimensional Analysis, 2nd Edition, Springer, Berlin, 1998.Google Scholar
  2. 2.
    Aliprantis, C.D. and Brown, D.J.: Equilibria in markets with a Riesz space of commodities, J. Math. Economics 11 (1983), 189-207.Google Scholar
  3. 3.
    Aliprantis, C.D., Brown, D.J. and Burkinshaw, O.: Edgeworth equilibria, Econometrica 55 (1987), 1109-1137.Google Scholar
  4. 4.
    Aliprantis, C.D., Brown, D.J. and Burkinshaw, O.: Edgeworth equilibria in production economies, J. Economic Theory 43 (1987), 252-291.Google Scholar
  5. 5.
    Aliprantis, C.D., Brown, D.J. and Burkinshaw, O.: Existence and Optimality of Competitive Equilibria, Springer, Berlin, 1990.Google Scholar
  6. 6.
    Aliprantis, C.D. and Burkinshaw, O.: Locally Solid Riesz Spaces, Academic Press, New York and London, 1978.Google Scholar
  7. 7.
    Aliprantis, C.D. and Burkinshaw, O.: Positive Operators, Academic Press, New York and London, 1985.Google Scholar
  8. 8.
    Aliprantis, C.D. and Burkinshaw, O.: The fundamental theorems of welfare economics without proper preferences, J. Math. Economics 17 (1988), 41-54.Google Scholar
  9. 9.
    Aliprantis, C.D. and Burkinshaw, O.: When is the core equivalence theorem valid?, Economic Theory 1 (1991), 169-182.Google Scholar
  10. 10.
    Aliprantis, C.D. and Tourky, R.: The super order dual of an ordered vector space and the Riesz-Kantorovich formula, Trans. Am. Math. Soc. 354 (2002), 2055-2077.Google Scholar
  11. 11.
    Aliprantis, C.D., Tourky, R. and Yannelis, N.C.: Cone conditions in general equilibrium theory, J. Economic Theory 92 (2000), 96-121.Google Scholar
  12. 12.
    Aliprantis, C.D., Tourky, R. and Yannelis, N.C.: The Riesz-Kantorovich formula and general equilibrium theory, J. Math. Economics 34 (2000), 55-76.Google Scholar
  13. 13.
    Aliprantis, C.D., Tourky, R. and Yannelis, N.C.: A theory of value with non-linear prices: equilibrium analysis beyond vector lattices, J. Economic Theory 100 (2001), 22-72.Google Scholar
  14. 14.
    Allais, M.: A la Recherche d'une Discipline Economique. Paris: Ateliers Industria, 1943. Second edition, Traité d'Economie Pure. Paris: Imprimerie Nationale, 1953.Google Scholar
  15. 15.
    Araujo, A. and Monteiro, P.K.: Equilibrium without uniform conditions, J. Economic Theory 48 (1989), 416-427.Google Scholar
  16. 16.
    Arrow, K.J.: An extension of the basic theorems of classical welfare economics, in: J. Neyman, Ed., Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability II, Part I. University of California Press, Berkeley, 1951, pp. 507-532.Google Scholar
  17. 17.
    Arrow, K.J. and Debreu, G.: Existence of an equilibrium for a competitive economy, Econometrica 22 (1954), 265-290.Google Scholar
  18. 18.
    Arrow, K.J. and Hahn, F.H.: General Competitive Analysis, Holden Day, San Francisco, 1971.Google Scholar
  19. 19.
    Aumann, R.J.: Markets with a continuum of traders, Econometrica 32 (1964), 39-50.Google Scholar
  20. 20.
    Back, K.: Structure of consumption sets and existence of equilibria in infinite-dimensional spaces, J. Math. Economics 17 (1988), 89-99.Google Scholar
  21. 21.
    Beato, P.: The existence of marginal cost pricing equilibria with increasing returns, The Quarterly Journal of Economics 389 (1982), 669-688.Google Scholar
  22. 22.
    Beato, P. and Mas-Colell A.: On the marginal cost pricing with given tax-subsidy rules, Journal of Economic Theory 37 (1985), 356-365.Google Scholar
  23. 23.
    Bergstrom, T.C.: How to discard 'free disposability' at no cost, J. Math. Economics 3 (1976), 131-134.Google Scholar
  24. 24.
    Bewley, T.F.: Existence of equilibria in economies with infinitely many commodities, J. Economic Theory 4 (1972), 514-540.Google Scholar
  25. 25.
    Boiteux, M.: La vente au coût marginal, Bulletin de l'Association Suisse des Electriciens 47 (1956).Google Scholar
  26. 26.
    Boiteux, M.: Sur the gestion des monopoles publics astreints à l'équilibre budgétaire, Econometrica 24 (1956), 22-40. Translated as: On the management of public monopolies subject to budgetary constraints, Journal of Economic Theory 3 (1971), 219-240.Google Scholar
  27. 27.
    Bonnisseau, J.M.: On two existence results of equilibria in economies with increasing returns, J. Math. Economics 17 (1988), 193-207.Google Scholar
  28. 28.
    Bonnisseau, J.M.: Caractérisation des optima de Pareto dans une économie avec effets externes, Annales d'Economie et de Statistique 36 (1994), 97-112.Google Scholar
  29. 29.
    Bonnisseau, J.M. and Cornet, B.: Valuation equilibrium and Pareto optimum in nonconvex economies, J. Math. Economics 17 (1988), 293-308.Google Scholar
  30. 30.
    Bonnisseau, J. M. and Cornet, B.: Existence of equilibria when firms follow bounded losses pricing rules, J. Math. Economics 17 (1988), 119-147.Google Scholar
  31. 31.
    Bonnisseau, J.M. and Cornet, B.: Existence of marginal cost pricing equilibria in an economy with several nonconvex firms, Econometrica 58 (1990), 661-682.Google Scholar
  32. 32.
    Bonnisseau, J.M. and Cornet, B.: Existence of marginal cost pricing equilibria: the nonsmooth case, Internat. Economic Review 31 (1990), 685-708.Google Scholar
  33. 33.
    Bonnisseau, J.M. and Cornet, B.: Equilibrium theory with increasing returns: the existence problem, in: Barnett, W., Cornet, B., D'Aspremont, C., Gabszewicz, J.J., Mas-Colell, A., (eds.), General Equilibrium Theory and Applications. (International Symposia in Economic Theory and Econometrics, Cambridge University Press, Cambridge and New York, 1991), pp. 65-82.Google Scholar
  34. 34.
    Borwein, J.M. and Joffré, A.: A nonconvex separation property in Banach spaces Math. Methods Oper. Res. 48 (1998), 169-179.Google Scholar
  35. 35.
    Bridges, D.S. and Mehta, G.B.: Representation of Preference Orderings, Lecture Notes in Economics and Mathematical Systems, Vol. 422, Springer, Berlin and New York, 1995.Google Scholar
  36. 36.
    Browder, F.E., Ed., The Mathematical Heritage of Henri Poincaré. Part 1, Providence, RI, American Mathematical Society, 1983.Google Scholar
  37. 37.
    Brown, D. J.: Equilibrium analysis with non-convex technologies, in W. Hildenbrand and H. Sonnenschein (eds), Handbook of Mathematical Economics, Vol. IV, North-Holland, Amsterdam, 1991, pp. 1963-1995.Google Scholar
  38. 38.
    Brown, D.J. and Heal, G.M.: Equity, efficiency and increasing returns, Review of Economic Study 46 (1979), 571-585.Google Scholar
  39. 39.
    Brown, D.J. and Heal, G.M.: Two parts tariffs, marginal cost pricing and increasing returns, Journal of Public Economics 13 (1980), 22-50.Google Scholar
  40. 40.
    Brown, D.J., Heal, G., Khan, A.M., and Vohra, R.: On a general existence theorem for marginal cost pricing equilibria, Journal of Economic Theory 38 (1986), 371-379.Google Scholar
  41. 41.
    Cassel, G.: Theory of Social Economy, T. Fisher Unwin, London, 1923.Google Scholar
  42. 42.
    Clarke, F.: Generalized gradients and applications, Trans. Am. Math. Soc. 205 (1975), 247-262.Google Scholar
  43. 43.
    Clarke, F.: Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.Google Scholar
  44. 44.
    Cornet, B.: The second welfare theorem in nonconvex economies, CORE Discussion Paper, # 8630, Université Catholique de Louvain, 1986.Google Scholar
  45. 45.
    Cornet, B.: Topological properties of the set of attainable production plans in a nonconvex production economy, J. Math. Economics 17 (1988), 275-292.Google Scholar
  46. 46.
    . Cornet, B.: Existence of equilibria in economies with increasing returns, in: Cornet, B. and Tulkens, H., (eds) Contributions to Operations Research and Economics, Louvain-la-Neuve, 1987. The MIT Press, Cambridge, MA, 1989, pp. 79-97.Google Scholar
  47. 47.
    Cornet, B.: General equilibrium theory and increasing returns: presentation, J. Math. Economics 17 (1988), 103-118.Google Scholar
  48. 48.
    Cornet, B.: Marginal cost pricing and Pareto optimality, in: P. Champsaur et al, eds., Essays in Honor of Edmond Malinvaud. The MIT Press, Cambridge, MA, 1990, pp. 13-52.Google Scholar
  49. 49.
    Cornet, B. and Rockafellar, R.T.: Separation theorems and supporting price theorems for nonconvex sets, unpublished, Université de Paris 1, 1988.Google Scholar
  50. 50.
    Debreu, G.: The coefficient of resource utilization, Econometrica 19 (1951), 273-292.Google Scholar
  51. 51.
    Debreu, G.: Valuation equilibrium and Pareto optimum, Proc. Natl. Acad. Sci. U.S.A. 40 (1954), 588-592.Google Scholar
  52. 52.
    Debreu, G.: Representation of a preference ordering by a numerical function: in Thrall, R.M., Coombs, C.H. and Davis, R.L. (eds.), Decision Processes, Wiley, New York, 1954, 159-165.Google Scholar
  53. 53.
    Debreu, G.: Theory of Value, John Wiley, New York, 1959.Google Scholar
  54. 54.
    Debreu, G.: New concepts and techniques for equilibrium analysis, Int. Economic Review 3 (1962), 257-273.Google Scholar
  55. 55.
    Debreu, G.: Economies with a finite set of equilibria, Econometrica 38 (1970), 387-392.Google Scholar
  56. 56.
    Debreu, G. and Scarf, H.E.: A limit theorem on the core of an economy, Int. Economic Review 4 (1963), 235-246.Google Scholar
  57. 57.
    Deghdak, M. and Florenzano, M.: Decentralizing Edgeworth equilibria in economies with many commodities, Economic Theory 14 (1999), 297-310.Google Scholar
  58. 58.
    Dierker, E., Fourgeaud, C. and Neuefeind, W.: Increasing returns to scale and productive systems, Economic Theory 13 (1976), 428-438.Google Scholar
  59. 59.
    Dierker, E., Guesnerie, R. and Neuefeind, W.: General equilibrium where some firms follow special pricing rules, Econometrica 53 (1985) 1369-1393.Google Scholar
  60. 60.
    Dierker, E.: When does marginal cost pricing lead to Pareto-efficiency?, Zeitschrift für Nationalökonomie 5 (1986), 41-66.Google Scholar
  61. 61.
    Dupuit, J.: De l'Utilité et de sa Mesure, Turin, La Riforma Sociale, 1933. On theMeasurement of the Utility of Public Works, International Economic Papers, (1952), 83-110. (Originally published in 1844.)Google Scholar
  62. 62.
    Gale, D.: The law of supply and demand, Math. Scandinavica 3 (1955), 155-169.Google Scholar
  63. 63.
    Gale, D. and Mas-Colell, A.: An equilibrium existence theorem for a general model without ordered preferences, J. Math. Economics 2 (1975), 9-15.Google Scholar
  64. 64.
    Geanakoplos, J.: An introduction to general equilibrium with incomplete asset markets, J. Math. Economics 19 (1990), 1-38.Google Scholar
  65. 65.
    Guesnerie, R.: Pareto-optimality in nonconvex economies, Econometrica 43 (1975), 1-29.Google Scholar
  66. 66.
    Hildenbrand, W.: Core and Equilibria of a Large Economy, Princeton University Press, Princeton, NJ, 1974.Google Scholar
  67. 67.
    Hotelling, H.: The general welfare in relation to problems of taxation and of railway and utility rates, Econometrica 6 (1938), 242-269.Google Scholar
  68. 68.
    Hotelling, H.: The relation of prices to marginal costs in an optimum system, Econometrica 7 (1939), 151-155.Google Scholar
  69. 69.
    Hurwicz, L.: Programming in linear spaces, in: K. Arrow, L. Hurwicz, and H. Uzawa (eds), Studies in Linear and Non-Linear Programming, Stanford University Press, 1958.Google Scholar
  70. 70.
    Kamiya, K., Existence and uniqueness of equilibria with increasing returns, Journal of Mathematical Economics 17 (1988).Google Scholar
  71. 71.
    Khan, M.A.: The Mordukhovich normal cone and the foundation of welfare economics, J. Public Economic Theory 251 (2000), 187-216.Google Scholar
  72. 72.
    Khan, M.A.: Ioffe's normal cone and the foundations of welfare economics: the infinitedimensional theory, J. Math. Anal. Appl. 161 (1991), 284-298.Google Scholar
  73. 73.
    Khan, M.A. and Vohra R.: An extension of the second welfare theorem to economies with non-convexities and public goods, Quarterly Journal of Economics 102 (1987), 223-241.Google Scholar
  74. 74.
    Khan, M.A. and Vohra R.: Pareto-optimal allocations of nonconvex economies in locally convex spaces, Nonlinear Analysis 12 (1988), 943-950.Google Scholar
  75. 75.
    Klee, Jr., V.L.: The support property of a convex set, Duke Math. J. 15 (1948), 767-772.Google Scholar
  76. 76.
    Lange, O.: The foundations of welfare economics, Econometrica 10 (1942), 215-228.Google Scholar
  77. 77.
    Le Van, C.: Complete characterization of Yannelis-Zame and Chichilnisky-Kalman-Mas-Colell properness conditions on preferences for separable concave functions defined in L p+ and L p, Economic Theory 8 (1996), 155-166.Google Scholar
  78. 78.
    Lerner, A.P.: The Economics of Control, Macmillan, New York, 1944.Google Scholar
  79. 79.
    Malinvaud, E.: Lecons de Théorie Microéconomique, Dunod, Paris, 1972.Google Scholar
  80. 80.
    Marshal, A.: Principles of Economics, Macmillan, London, 1920.Google Scholar
  81. 81.
    Mas-Colell, A.: An equilibrium existence theorem without complete or transitive preferences, J. Math. Economics 1 (1974), 237-246.Google Scholar
  82. 82.
    Mas-Colell, A.: The price equilibrium existence problem in topological vector lattices, Econometrica 54 (1986), 1039-1053.Google Scholar
  83. 83.
    Mas-Colell, A. and Richard, S.F.: A new approach to the existence of equilibria in vector lattices, J. Economic Theory 53 (1991), 1-11.Google Scholar
  84. 84.
    Mas-Colell, A., Whinston, M.D. and Green, J.R.: Microeconomic Theory, Oxford Univ. Press, New York and Oxford, 1995.Google Scholar
  85. 85.
    McKenzie, L. W.: On equilibrium in Graham's model of world trade and other competitive systems, Econometrica 22 (1954), 147-161.Google Scholar
  86. 86.
    McKenzie, L.W.: Competitive equilibrium with dependent consumer preferences, in: Antosiewicz, H.A. (ed.), Proceedings of the Second Symposium in Linear Programming, National Bureau of Standards, Washington, DC, 1955, pp. 277-294.Google Scholar
  87. 87.
    McKenzie, L.W.: On the existence of general equilibrium for a competitive market, Econometrica 27 (1959), 54-71.Google Scholar
  88. 88.
    McKenzie, L.W.: The classical theorem on existence of competitive equilibrium, Econometrica 29 (1981), 819-841.Google Scholar
  89. 89.
    Miranda, C.: Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital. 3 (1940), 5-7.Google Scholar
  90. 90.
    Monteiro, P. and Tourky, R.: Mas-Colell's price equilibrium existence problem-the case of smooth disposal, J. Economic Theory, forthcoming.Google Scholar
  91. 91.
    Mordukhovich, B.S.: Metric approximations and necessary conditions for an extremum in nonsmooth optimization, Doklady Akad. Nauk. SSR 224, 1072-1076. English translation in Soviet Math. Doklady Akad. 22 (1980), 526-530.Google Scholar
  92. 92.
    Mordukhovich, B.S.: An abstract extremal principle with applications to welfare economics, Journal of Math. An. and Appl. 251 (2000), 187-216.Google Scholar
  93. 93.
    Negishi, T.: Welfare economics and existence of an equilibrium for a competitive economy, Metroeconomica 12 (1960), 92-97.Google Scholar
  94. 94.
    Nikaidô, H.: Convex Structures and Economic Theory, Mathematics in Science and Engineering, Academic Press, New York, 1986.Google Scholar
  95. 95.
    Pigou, A.P.: The Economics of Welfare, Macmillan, London, 1932.Google Scholar
  96. 96.
    Podczeck, K.: Equilibria in vector lattices without ordered preferences or uniform properness, J. Math. Economics 25 (1996), 465-485.Google Scholar
  97. 97.
    Quinzii, M.: Increasing Returns and Efficiency, Oxford University Press, Oxford, 1992.Google Scholar
  98. 98.
    Radner, R.: Efficiency prices for infinite horizon production programmes, Rev. Economic Studies 34 (1967), 51-66.Google Scholar
  99. 99.
    Richard, S.F.: A new approach to production equilibria in vector lattices, J. Math. Economics 18 (1989), 41-56.Google Scholar
  100. 100.
    Richard, S.F. and Zame,W.R.: Proper preferences and quasiconcave utility functions, J. Math. Economics 15 (1986), 231-247.Google Scholar
  101. 101.
    Rockafellar, R.T.: Convex Analysis, Princeton University Press, Princeton, NJ, 1970.Google Scholar
  102. 102.
    Samuelson, P.A.: Foundations of Economic Analysis, Harvard University Press, Cambridge, MA, 1947.Google Scholar
  103. 103.
    Scarf, H.E.: The Computation of Economic Equilibria, Yale University Press, New Haven, CT, 1973.Google Scholar
  104. 104.
    Schumpeter, J.A.: History of Economic Analysis, 9th Printing, Oxford University Press, New York, 1976.Google Scholar
  105. 105.
    Shafer, W.J. and Sonnenschein, H.F.: Equilibrium in abstract economies without ordered preferences, J. Math. Economics 2 (1975), 345-348.Google Scholar
  106. 106.
    Shafer, W.J. and Sonnenschein, H.F.: Some theorems on the existence of competitive equilibrium, J. Economic Theory 11 (1975), 83-93.Google Scholar
  107. 107.
    Shafer,W.J. and Sonnenschein, H.F.: Equilibrium with externalities, commodity taxation, and lump sum transfers, Int. Economic Review 17 (1976), 601-611.Google Scholar
  108. 108.
    Sonnenschein, H.F.: Demand theory without transitive preferences, with applications to the theory of competitive equilibrium, in: Chipman, J., Hurwicz, L., Richter, M.K. and Sonnenschein, H.F. (eds.), Preferences, Utility, and Demand Harcourt Brace Jovanovich, New York, 1971, 215-223.Google Scholar
  109. 109.
    Takayama, A. and El-Hodiri, M.: Programming, Pareto optimum and the existence of competitive equilibria, Metroeconomica 20 (1968), 1-10.Google Scholar
  110. 110.
    Tourky, R.: A new approach to the limit theorem on the core of an economy in vector lattices, J. Economic Theory 78 (1998), 321-328.Google Scholar
  111. 111.
    Tourky, R.: The limit theorem on the core of a production economy in vector lattices with unordered preferences, Economic Theory 14 (1999), 219-226.Google Scholar
  112. 112.
    Vohra, R.: On the existence of equilibria in economies with increasing returns, Journal of Mathematical Economics 17 (1988).Google Scholar
  113. 113.
    Wald, A.: On some systems of equations of mathematical economics, Econometrica 19 (1951), 386-403.Google Scholar
  114. 114.
    Walras, L.: Walras on Gossen, in: Spiegel, H.W. (ed.), The Development of Economic Thought, Great Economists in Perspective, John Wiley and Sons, New York, 1952. First appeared in the Journal des Economistes, 1885, under the title 'Un énonomiste inconnu,' H. H. Gossen, pp. 471-488.Google Scholar
  115. 115.
    Walras, L.: Eléments d'Economie Politique Pure, Lausanne, Corbaz, 1874-1877. Elements of Pure Economics, Definitive Edition, George Allen and Unwin Ltd, London, 1954. Translated into English by W. Jaffé.Google Scholar
  116. 116.
    Yannelis, N.C. and Prabhakar, N.: Existence of maximal elements and equilibria in linear topological spaces, J. Math. Economics 12 (1983), 233-245.Google Scholar
  117. 117.
    Yannelis, N.C. and Zame, W.R.: Equilibria in Banach lattices without ordered preferences, J. Math. Economics 15 (1986), 85-110.Google Scholar
  118. 118.
    Yun, K.K.: Pareto optimality in non-convex economies and marginal cost pricing equilibria, in: Proceedings of the First International Conference of Korean Economists, 1984.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • C.D. Aliprantis
    • 1
  • B. Cornet
    • 2
  • R. Tourky
    • 3
  1. 1.Department of EconomicsPurdue UniversityWest LafayetteUSA
  2. 2.CERMSEM, Maison des Sciences EconomiquesUniversité Paris IParis Cedex 13France
  3. 3.Department of EconomicsUniversity of MelbourneMelbourneAustralia

Personalised recommendations