Pharmaceutical Research

, Volume 19, Issue 8, pp 1170–1179 | Cite as

Increasing Paracellular Porosity by E-Cadherin Peptides: Discovery of Bulge and Groove Regions in the EC1-Domain of E-Cadherin

  • Ernawati Sinaga
  • Seetharama D. S. Jois
  • Mike Avery
  • Irwan T. Makagiansar
  • Usman S. F. Tambunan
  • Kenneth L. Audus
  • Teruna J. Siahaan


Purpose. The objective of this work is to evaluate the ability of peptides derived from the bulge (HAV-peptides) and groove (ADT-peptides) regions of E-cadherin EC1-domain to increase the paracellular porosity of the intercellular junctions of Madin-Darby canine kidney (MDCK) cell monolayers.

Methods. Peptides were synthesized using a solid-phase method and were purified using semi-preparative HPLC. MDCK monolayers were used to evaluate the ability of cadherin peptides to modulate cadherin-cadherin interactions in the intercellular junctions. The increase in intercellular junction porosity was determined by the change in transepithelial electrical resistance (TEER) values and the paracellular transport of 14C-mannitol.

Results. HAV- and ADT-peptides can lower the TEER value of MDCK cell monolayers and enhance the paracellular permeation of 14C-mannitol. HAV- and ADT-decapeptides can modulate the intercellular junctions when they are added from the basolateral side but not from the apical side; on the other hand, HAV- and ADT-hexapeptides increase the paracellular porosity of the monolayers when added from either side. Conjugation of HAV- and ADT-peptides using ω-aminocaproic acid can only work to modulate the paracellular porosity when ADT-peptide is at the N-terminus and HAV-peptide is at the C-terminus; because of its size, the conjugate can only modulate the intercellular junction when added from the basolateral side.

Conclusions. Peptides from the bulge and groove regions of the EC1 domain of E-cadherin can inhibit cadherin-cadherin interactions, resulting in the opening of the paracellular junctions. These peptides may be used to improve paracellular permeation of peptides and proteins. Furthermore, this work suggests that both groove and bulge regions of EC-domain are important for cadherin-cadherin interactions.

E-cadherin cell-cell adhesion HAV peptides ADT peptides intercellular junctions adherens junction MDCK cell monolayers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. Lutz and T. J. Siahaan. Molecular structure of the apical junction complex and its contribution to the paracellular barrier. J. Pharm. Sci. 86:977–984 (1997).Google Scholar
  2. 2.
    K. L. Lutz, S. Bogdanowich-Knipp, D. Pal, and T. J. Siahaan. Structure, function and modulation of E-cadherins as mediators of cell-cell adhesion. Curr. Top. in Pept. Prot. Res. 2:69–82 (1997).Google Scholar
  3. 3.
    J. L. Madara. Tight junction dynamics: Is paracellular transport regulated? Cell 53:497–498 (1988).Google Scholar
  4. 4.
    J. M. Anderson and C. M. Van Itallie. Tight junctions and the molecular basis for regulation of paracellular permeability. Am. J. Physiol. 269:G467–G475 (1995).Google Scholar
  5. 5.
    A. Adson, T. J. Raub, P. S. Burton, C. L. Barsuhn, A. R. Hilgers, K. L. Audus, and N. F. H. Ho. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J. Pharm. Sci. 83:1529–1536 (1994).Google Scholar
  6. 6.
    K. L. Lutz and T. J. Siahaan. Modulation of the cellular junction protein E-cadherin in bovine brain microvessel endothelial cells by cadherin peptides. Drug Delivery 4:187–193 (1997).Google Scholar
  7. 7.
    D. Pal, K. L. Audus, and T. J. Siahaan. Modulation of cellular adhesion in bovine microvessel endothelial cells by a decapeptide. Brain Res. 747:103–113 (1997).Google Scholar
  8. 8.
    I. T. Makagiansar, M. Avery, Y. Hu, K. L. Audus, and T. J. Siahaan. Improving selectivity of HAV-peptides in modulating E-cadherin-E-cadherin interactions in the intercellular junctions of MDCK cell monolayers. Pharm. Res. 18:446–453 (2001).Google Scholar
  9. 9.
    B. Gumbiner. Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 253:749–758 (1987).Google Scholar
  10. 10.
    B. Gumbiner. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. Cell. Biol. 107:1575–1587 (1988).Google Scholar
  11. 11.
    A. W. Koch, D. Bozic, O. Pertz, and J. Engel. Homophilic adhesions by cadherins. Curr. Opin. Struc. Biol. 9:275–281 (1999).Google Scholar
  12. 12.
    M. Takeichi. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455 (1991).Google Scholar
  13. 13.
    M. Takeichi. The cadherins: Cell-cell adhesion molecules controlling animal mophogenesis. Development 102:639–655 (1988).Google Scholar
  14. 14.
    M. Takeichi. Cadherins: A molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59:237–252 (1990).Google Scholar
  15. 15.
    I. Makagiansar, E. Sinaga, A. Calcagno, R. Xu, and T. J. Siahaan. Roles of E-cadherin and β-catenin in cell adhesion and signaling and possible therapeutic application. Curr. Top. Biochem. Res. 2:51–61 (2000).Google Scholar
  16. 16.
    M. Overduin, T. Harvey, S. Bagby, K. Tong, P. Yau, M. Takeichi, and M. Ikura. Solution structure of the epithelial cadherin domain responsible for selective cell-adhesion. Science 267:386–389 (1995).Google Scholar
  17. 17.
    B. Nagar, M. Overduin, M. Ikura, and J. M. Rini. Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380:360–364 (1996).Google Scholar
  18. 18.
    L. Shapiro, A. M. Fannon, P. D. Kwong, A. Thompson, M. S. Lehmann, G. Grubel, J. F. Legrand, J. Als-Nielsen, D. R. Colman, and W. A. Hendrickson. Structural basis of cell-cell adhesion by cadherins. Nature 374:327–337 (1995).Google Scholar
  19. 19.
    J. Alattia, H. Kurokawa, and M. Ikura. Structural view of cadherin-mediated cell-cell adhesion. Cell. Mol. Life Sci. 55:359–367 (1999).Google Scholar
  20. 20.
    C. L. Adams and W. J. Nelson. Cytomechanics of cadherinmediated cell-cell adhesion. Curr. Opin. Cell Biol. 10:572–577 (1998).Google Scholar
  21. 21.
    I. T. Makagiansar, P. D. Nguyen, A. Ikesue, K. Kuczera, W. Dentler, J. L. Urbauer, N. Galeva, M. Alterman, and T. J. Siahaan. Disulfide bond formation promotes the cis-and transdimerization of the E-cadherin derived first repeat (E-CAD1). J. Biol. Chem. 277:6002–10010 (2002).Google Scholar
  22. 22.
    S. Chappuis-Flament, E. Wong, L. D. Hicks, C. M. Kay, and B. M. Gumbiner. Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J. Cell Biol. 154:231–243 (2001).Google Scholar
  23. 23.
    A. Nose, K. Tsuji, and M. Takeichi. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61:147–155 (1990).Google Scholar
  24. 24.
    K. L. Lutz, L. A. Szabo, D. L. Thompsons, and T. J. Siahaan. Antibody recognition of peptide sequences from the cell-cell adhesion proteins: N-and E-cadherins. Pept. Res. 9:233–239 (1996).Google Scholar
  25. 25.
    K. L. Lutz and T. J. Siahaan. E-cadherin peptide sequence recognition by an anti-E-cadherin antibody. Biochem. Biophys. Res. Commun. 211:21–27 (1995).Google Scholar
  26. 26.
    M. Takeichi. Morphogenetic roles of classic cadherins. Curr. Opin. Cell. Biol. 7:619–627 (1995).Google Scholar
  27. 27.
    K. Boller, D. Vestweber, and R. Kemler. Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. J. Cell Biol. 100:327–332 (1985).Google Scholar
  28. 28.
    G. Christofori and H. Semb. The role of the cell-adhesion molecule E-cadherin as a tumour suppressor gene. Trends. Biochem. Sci. 24:73–76 (1999).Google Scholar
  29. 29.
    M. Katayama, S. Hirai, K. Kamihagi, K. Nakagawa, M. Yasumoto, and I. Kato. Soluble E-cadherin fragments increased in circulation of cancer patients. Br. J. Cancer 69:580–585 (1994).Google Scholar
  30. 30.
    J. Behrens, W. Birchmeier, S. L. Goodman, and B. A. Imhof. Dissociation of MDCK cells by the monoclonal antibody anti-arc-1: Mechanistic aspects and identification of the antigen as a component related to uvomorulin. J. Cell Biol. 101:1307–1315 (1985).Google Scholar
  31. 31.
    L. Gonzalez-Mariscal, B. Chavez de Ramirez, and M. Cereijido. Tight junction formation in cultured epithelial cells (MDCK). J. Membr. Biol. 86:113–125 (1985).Google Scholar
  32. 32.
    O. Pertz, D. Bozic, A. W. Koch, C. Fauser, A. Brancaccio, and J. Engel. A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. Embo J. 18:1738–1747 (1999).Google Scholar
  33. 33.
    K. L. Lutz, D. Pal, K. L. Audus, and T. J. Siahaan. Inhibition of E-cadherin-mediated cell-cell adhesion by cadherin peptides. In J. P. Tam and P. T. P. Kaumaya. (eds.), Peptides: Frontiers of Science, Kluwer Academic Press, Boston, 1999 pp. 753–754.Google Scholar
  34. 34.
    J. M. Berman, M. Goodman, T. M. Nguyen, and P. W. Schiller. Cyclic and acyclic partial retro-inverso enkephalinamides: Mu receptor selective enzyme resistant analogs. Biochem. Biophys. Res. Commun. 115:864–870 (1983).Google Scholar
  35. 35.
    N. Chaturvedi, M. Goodman, and C. Bowers. Topochemically related hormone structures. Synthesis of partial retro-inverso analogs of LH-RH. Int. J. Pept. Protein Res. 17:72–88 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Ernawati Sinaga
  • Seetharama D. S. Jois
  • Mike Avery
  • Irwan T. Makagiansar
  • Usman S. F. Tambunan
  • Kenneth L. Audus
  • Teruna J. Siahaan

There are no affiliations available

Personalised recommendations