Skip to main content
Log in

Parallel constrained molecular dynamics

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A block version of the Shake method for heavy atom simulation in biological systems is presented in this paper. The method solves successively, independent blocks of constraints of small size by a Newton method. This algorithm is implemented in TAKAKAW, an efficient parallel molecular dynamics code. This method has been tested on a small system and on an ionic canal of 67671 atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

    Google Scholar 

  2. E. Barth, K. Kuczera, B. Leimkuhler and R. Skeel, Algorithms for constraints molecular dynamics, J. Comput. Chem. 16(10) (1995) 1192-1209.

    Article  Google Scholar 

  3. P.E. Bernard, Parallélisation et multiprogrammation pour une application iréguliè re de dynamique moléculaire opérationnelle, Thè se de l'Institut National Polytechnique de Grenoble (1997).

  4. P.E. Bernard, T. Gautier and D. Trystram, Large scale simulation of parallel molecular dynamics, in: Proc. of 2nd Merged Symposium IPPS/SPDP, 13th Internat. Parallel Processing Symposium and 10th Symposium on Parallel and Distributed Processing (April 1999) pp. 638-644.

  5. J. Briat, I. Ginzburg, M. Pasin and B. Plateau, Athapascan runtime: Efficiency for irregular, in: Proc. of the EUROPAR'97 Conf., Passau, Germany (August 1997) pp. 590-599.

  6. D.R. Butenhof, Programming with Posix Threads, Professional Computing Series (Addison-Wesley, Reading, MA, 1997).

    Google Scholar 

  7. D. Frenkel and B. Smit, Understanding Molecular Simulation from Algorithms to Applications (Academic Press, New York, 1996).

    Google Scholar 

  8. R.L. Graham, Bounds for certain multiprocessor anomalies, Bell System Tech. J. 45 (1966) 1563-1581.

    Google Scholar 

  9. W. Gropp, E. Lusk and A. Skjellum, Using MPI-Portable Parallel Programming with Message Passing Interface (MIT Press, Cambridge, MA, 1994).

    Google Scholar 

  10. W.L. Jorgensen, J. Chandrasekhar, J. Madura, R.W. Impey and M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2) (1983).

  11. B. Leimkuhler and R.D. Sekel, Symplectic numerical integrators in constrained Hamiltonian system, J. Comput. Phys. 112 (1994) 117-125.

    Article  MATH  MathSciNet  Google Scholar 

  12. L.R.J. Lipton, D.J. Rose and R. Tarjan Endre, Generalized nested dissection, Technical Report CS-TR-77-645, Department of Computer Science, Stanford University (1995).

  13. J.M. Ortega and C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970).

    Google Scholar 

  14. L. Petzold, L. Jay and J. Yen, Numerical solution of highly oscillatory ordinary differential equations, Acta Numerica (1997) 437-487.

  15. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19.

    Article  MATH  Google Scholar 

  16. J.M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: An overview, Acta Numerica (1992) 241-286.

  17. J. Yen and L. Petzold, An efficient Newton-type iteration for the numerical solution of highly oscillatory constrained multibody dynamic systems, SIAM J. Sci. Comput. 19(5) (1998) 1513-1534.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulaud, O., Bernard, PE. Parallel constrained molecular dynamics. Numerical Algorithms 24, 393–405 (2000). https://doi.org/10.1023/A:1019170032549

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019170032549

Navigation