Tribology Letters

, 7:153 | Cite as

Computer simulation of sliding hydroxylated alumina surfaces

  • David J. Mann
  • William L. Hase
Article

Abstract

A molecular dynamics simulation is performed to investigate the frictional force and energy transfer dynamics associated with sliding hydroxylated alumina surfaces. The calculated coefficient of friction is in good agreement with a recent experimental study. The dynamics of energy transfer from the interface of the sliding surface is investigated by calculating the surface–surface intermolecular potential and the energy in surface hydroxyl groups. The simulations indicate the experimental friction force arises from energy relaxation. A transition from stick–slip to smooth sliding is observed as the sliding velocity is increased.

alumina sliding surfaces molecular dynamics simulations stick–slip sliding friction energy relaxation 

References

  1. [1]
    B. Bhushan and V.N. Koinkar, J. Appl. Phys. 75 (1994) 5741.CrossRefGoogle Scholar
  2. [2]
    N.V. Gitis, L. Volpe and R. Sonnenfeld, in: Long-Term Stiction at the Magnetic Thin Film Disk-Slider Interface, Advances in Information Storage Systems, Vol. 3, ed. B. Bhushan (ASME, New York, 1991).Google Scholar
  3. [3]
    J. Krim, Sci. Am. October (1996) 74.CrossRefGoogle Scholar
  4. [4]
    G.A. Tomlinson, Philos. Mag. 7 (1929) 905.Google Scholar
  5. [5]
    F.C. Frenkel and T. Kontorova,Zh. Eksp. Teor. Fiz. 8 (1938) 1340.Google Scholar
  6. [6]
    J.B. Sokoloff, Phys. Rev. B 42 (1990) 760.CrossRefGoogle Scholar
  7. [7]
    G.M. McClelland, in: Adhesion and Friction, Springer Series of Surface Sciences, Vol. 17, eds. M. Grunze and H.J. Kreuzer (Springer, Berlin, 1989) p. 1.Google Scholar
  8. [8]
    G.M. McClelland and J.N. Glosli, in: NATO ASI Proceedings on Fundamentals of Friction: Macroscopic and Microscopic Processes, eds. I.L. Singer and H.M. Pollock (Kluwer Academic Publishers, Dordrect, 1992) p. 405.Google Scholar
  9. [9]
    C.M. Mate, G.M. McClelland, R. Erlandsson and S. Chiang, Phys. Rev. Lett. 59 (1987) 1942.CrossRefGoogle Scholar
  10. [10]
    G.J. Germann, S.R. Cohen, G. Neubauer, G.M. McClelland, H. Seki and D. Coulman, J. Appl. Phys. 73 (1993) 163.CrossRefGoogle Scholar
  11. [11]
    P.M. McGuiggan, J.N. Israelachvili, M.L. Gee and A.M. Homola, Mater. Res. Soc. Symp. Proc. 140 (1989) 79.Google Scholar
  12. [12]
    H. Yoshizawa, Y.-L. Chen and J.N. Israelachvili, Wear 168 (1993) 161.CrossRefGoogle Scholar
  13. [13]
    S. Yamada and J. Israelachvili, J. Phys. Chem. B 102 (1998) 234.CrossRefGoogle Scholar
  14. [14]
    A. Lio, D.H. Charych and M. Salmeron, J. Phys. Chem. B 101 (1997) 3800.CrossRefGoogle Scholar
  15. [15]
    J. Krim, D.H. Solina and R. Chiarello, Phys. Rev. Lett. 66 (1991) 181.CrossRefGoogle Scholar
  16. [16]
    S. Granick, Science 253 (1991) 1374.Google Scholar
  17. [17]
    A.L. Demirel and S. Granick, J. Chem. Phys. 109 (1998) 6889.CrossRefGoogle Scholar
  18. [18]
    E. Kumacheva and J. Klein, J. Chem. Phys. 108 (1998) 7010.CrossRefGoogle Scholar
  19. [19]
    U. Landman, W.D. Luedtke and A. Nitzan, Surf. Sci. 210 (1989) L177.CrossRefGoogle Scholar
  20. [20]
    J. Gao, W.D. Luedtke and U. Landman, Science 270 (1995) 605.Google Scholar
  21. [21]
    U. Landman, W.D. Luedtke and J. Gao, Langmuir 12 (1996) 4514.CrossRefGoogle Scholar
  22. [22]
    J. Gao, W.D. Luedtke and U. Landman, J. Phys. Chem. B 102 (1998) 5033.CrossRefGoogle Scholar
  23. [23]
    P.A. Thompson and M.O. Robbins, Science 250 (1990) 792.Google Scholar
  24. [24]
    M.O. Robbins, P.A. Thompson and G.S. Grest, MRS Bulletin May (1993) 45.Google Scholar
  25. [25]
    M. Cieplak, E.D. Smith and M.O. Robbins, Science 265 (1994) 1209.Google Scholar
  26. [26]
    G. He, M.H. M¨user and M.O. Robbins, Science 284 (1999) 1650.CrossRefGoogle Scholar
  27. [27]
    J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, Phys. Rev. B 46 (1992) 9700.CrossRefGoogle Scholar
  28. [28]
    J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, MRS Bulletin May (1993) 50.Google Scholar
  29. [29]
    J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, J. Phys. Chem. 97 (1993) 6573.CrossRefGoogle Scholar
  30. [30]
    J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, Thin Solid Films 260 (1995) 205.CrossRefGoogle Scholar
  31. [31]
    M.D. Perry and J.A. Harrison, Thin Solid Films 290–291 (1996) 211.CrossRefGoogle Scholar
  32. [32]
    M.D. Perry and J.A. Harrison, J. Phys. Chem. B 101 (1997) 1364.CrossRefGoogle Scholar
  33. [33]
    J.A. Harrison and S.S. Perry, MRS Bulletin June (1998) 27.Google Scholar
  34. [34]
    K.J. Tupper and D.W. Brenner, Thin Solid Films 253 (1994) 185.CrossRefGoogle Scholar
  35. [35]
    J.N. Glosli and G.M. McClelland, Phys. Rev. Lett. 70 (1996) 1960.CrossRefGoogle Scholar
  36. [36]
    A. Koike and M. Yoneya, J. Chem. Phys. 105 (1996) 6060.CrossRefGoogle Scholar
  37. [37]
    A. Koike and M. Yoneya, J. Phys. Chem. B 102 (1998) 3669.CrossRefGoogle Scholar
  38. [38]
    M.G. Rozman, M. Urbakh and J. Klatter, Phys. Rev. Lett. 77 (1996) 683.CrossRefGoogle Scholar
  39. [39]
    N.N. Matsuzawa and N. Kishii, J. Phys. Chem. A 101 (1997) 10045.CrossRefGoogle Scholar
  40. [40]
    P. Padilla, J. Chem. Phys. 103 (1995) 2157.CrossRefGoogle Scholar
  41. [41]
    J. Simizu, H. Eda, M. Yoritsune and E. Ohmura, Nanotechnology 9 (1998) 118.CrossRefGoogle Scholar
  42. [42]
    J.N. Israelachvili and D. Tabor, Nature 241 (1973) 148.Google Scholar
  43. [43]
    G. Binnig, C.F. Quate and Ch. Gerber, Phys. Rev. Lett. 56 (1986) 930.CrossRefGoogle Scholar
  44. [44]
    G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett. 49 (1982) 57.CrossRefGoogle Scholar
  45. [45]
    P. de Sainte Claire, K.C. Hass, W.F. Schneider and W.L. Hase, J. Chem. Phys. 106 (1997) 7331.CrossRefGoogle Scholar
  46. [46]
    J.M. Wittbrodt, W.L. Hase and H.B. Schlegel, J. Phys. Chem. B 102 (1998) 6539.CrossRefGoogle Scholar
  47. [47]
    K. Bolton, S.B.M. Bosio, W.L. Hase, W.F. Schneider and K.C. Hass, J. Phys. Chem. B 103 (1999) 3885.CrossRefGoogle Scholar
  48. [48]
    K.C. Hass, W.F. Schneider, A. Curioni and W. Andreoni, Science 282 (1998) 265.CrossRefGoogle Scholar
  49. [49]
    R.Y. Jin, D.J. Mann and W.L. Hase, in preparation.Google Scholar
  50. [50]
    R.M. Slayton, C.M. Aubuchon, T.L. Camis, A.R. Noble and N.J. Tro, J. Phys. Chem. 99 (1995) 2151.CrossRefGoogle Scholar
  51. [51]
    S.Y. Nishimura, R.F. Gibbons and N.J. Tro, J. Phys. Chem. B 102 (1995) 6831.CrossRefGoogle Scholar
  52. [52]
    A. Berman, S. Steinberg, S. Campbell, A. Ulman and J. Israelachvili, Tribology Lett. 4 (1998) 43.CrossRefGoogle Scholar
  53. [53]
    Z. Xu, W. Ducker and J. Israelachvili, Langmuir 12 (1996) 2263.CrossRefGoogle Scholar
  54. [54]
    Cerius2, Molecular Simulations, Inc.Google Scholar
  55. [55]
    V. Coustet and J. Jupille, Surf. Sci. 307–309 (1994) 1161.CrossRefGoogle Scholar
  56. [56]
    A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III and W.M. Skiff, J. Am. Chem. Soc. 114 (1992) 10024.CrossRefGoogle Scholar
  57. [57]
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren and J. Hermans, in: Intermolecular Forces, ed. B. Pullman (Reidel, Dordrecht, 1981) p. 331.Google Scholar
  58. [58]
    J.M. Haile, Molecular Dynamics Simulation(Wiley, New York, 1997).Google Scholar
  59. [59]
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Dinola and J.R. Haak, J. Chem. Phys. 81 (1984) 3684.CrossRefGoogle Scholar
  60. [60]
    W.L. Hase, ed., Intramolecular and Nonlinear Dynamics, Advances in Classical Trajectory Methods, Vol. 1 (JAI, London, 1992).Google Scholar
  61. [61]
    K.D. Ball and S. Berry, J. Chem. Phys. 109 (1998) 8541.CrossRefGoogle Scholar
  62. [62]
    D.H. Lu and W.L. Hase, J. Phys. Chem. 92 (1998) 3217.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • David J. Mann
    • 1
  • William L. Hase
    • 1
  1. 1.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations