Skip to main content
Log in

Coke formation on an industrial reforming Pt–Sn/γ‐Al2O3 catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The characterization of the coke deposited on an industrial Pt–Sn/γ‐Al2O3 catalyst, used in a continuous reforming process, was performed with AFM, XRD, FTIR, EPR, NMR, TG‐DTG and DTA techniques. Composition, structure and location of the coke on the catalyst were investigated. The coke was predominantly deposited on the catalyst surface and in the interstices between the catalyst particles. Its content increased along the reactor from top to bottom. Coke was deposited in the form of uniform films and clusters of three‐dimensional disks with diameters between 0.12 and 0.18 μm. It had a pseudo‐graphite structure produced by the dehydrogenation and polymerization of the aromatic precursor compounds. The coked catalyst showed a good combustion behavior; it was regenerated below 550°C. These results are important to elucidate the coke formation mechanism, to generate new continuous reforming catalysts, and to optimize the reactor operation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Brownstein, Trends in Petrochemical Technology (Petroleum Publishing Co., Tulsa, OK, 1976) p. 17.

    Google Scholar 

  2. R. Burch, J. Catal. 71 (1981) 348.

    Article  CAS  Google Scholar 

  3. R. Prestvik, B. Totdal, C.E. Lyman and A. Holman, J. Catal. 176 (1998) 246.

    Article  CAS  Google Scholar 

  4. R. Prestik, K. Molyerd, K. Grande and A. Holman, J. Catal. 174 (1998) 119.

    Article  Google Scholar 

  5. F.H. Ribeiro, A.L. Bonivardi, C. Kim and G.A. Somorjai, J. Catal. 150 (1994) 186.

    Article  CAS  Google Scholar 

  6. L.J. Mcpherson and M.F. Olive, in: Modern Petroleum and Technology, ed. G.D. Hobson, 5th Ed., Part I (1984).

  7. R. Gomez, V. Bertin, P. Bosch and T. Lopez, Catal. Lett. 21 (1993) 309; J. Catal. 142 (1993) 641.

    Article  CAS  Google Scholar 

  8. F.B. Passos, D.A.G. Aranda and M. Schmal, J. Catal. 178 (1998) 478.

    Article  CAS  Google Scholar 

  9. T. Lopez, M. Asomoza and R. Gomez, Mater. Lett. 19 (1994) 193.

    Article  CAS  Google Scholar 

  10. G.T. Baronettic, S.R. Demignel, O.A. Scelza, M.A. Fritzler and A.A. Castro, Appl. Catal. 19 (1985) 77.

    Article  Google Scholar 

  11. K. Balehrishnan and J. Schnank, J. Catal. 127 (1991) 287.

    Article  Google Scholar 

  12. D.L. Trimm, in: Progress in Catalyst Deactivation, ed. J.L. Figueiredo (Nijhoff, The Hague, 1982) p. 17.

    Google Scholar 

  13. J. Barbier, in: Catalyst Deactivation, eds. B. Delmon and G.F. Froment (Elsevier, Amsterdam, 1987) p. 1.

    Google Scholar 

  14. M. Parera, R.J. Verderone, C.L. Pieck and E.M. Traffand, Appl. Catal. 23 (1986) 15.

    Article  CAS  Google Scholar 

  15. N.S. Figoli, J.N. Beltramini, C.A. Querini and J.M. Parera, Appl. Catal. 26 (1986) 39.

    Article  CAS  Google Scholar 

  16. J. Barbier, Appl. Catal. 23 (1986) 225.

    Article  CAS  Google Scholar 

  17. G.J. Arteaga, J.A. Anderson and C.H. Rochester, Catal. Lett. 58 (1999) 189.

    Article  CAS  Google Scholar 

  18. O.A. Barias, A. Holmen and E.A. Blekkan, J. Catal. 158 (1996) 1.

    Article  Google Scholar 

  19. B.H. Li and R.D. Gonzalez, Catal. Lett. 1-2 (1998) 5.

    Article  Google Scholar 

  20. D.A. Best and B.W. Wojciechowski, J. Catal. 47 (1977) 11.

    Article  CAS  Google Scholar 

  21. D. Eisenbach and E. Gallei, J. Catal. 56 (1979) 377.

    Article  CAS  Google Scholar 

  22. P. Andy, N.S. Gnep, M. Guisnet, E. Benazzi and C. Travers, J. Catal. 173 (1998) 326.

    Article  Google Scholar 

  23. L. Kubelkova, J. Cejka, J. Novakova, V. Bosacek, I. Jirka and P. Jiru, in: Zeolites, Facts, Figures, Future, Stud. Surf. Sci. Catal., Vol. 49, eds. P.A. Jacobs and R.A. van Santen (Elsevier, Amsterdam, 1989) p. 1203.

    Google Scholar 

  24. N.G. Kalinina, V.A. Poluboyarov, V.F. Anufrienko and K.G. Ione, Kinet. Catal. 27 (1986) 215.

    Google Scholar 

  25. N.G. Kalinina, Y.V. Ryabov, L.L. Korobitsyna, V.A. Poluboyarov, V.I. Erofeev, L.N. Kurina and V.F. Anufrienko, Kinet. Catal. 27 (1986) 219.

    Google Scholar 

  26. J.T. Ricardson, Principles of Catalyst Development (Plenum, New York, 1989) p. 215.

    Google Scholar 

  27. A. Corma, Chem. Rev. 95 (1995) 559.

    Article  CAS  Google Scholar 

  28. S.N. Maganov and M.H. Whangbo, in: Surface Analysis with STM and AFM (VCH, Weinheim, 1994).

    Google Scholar 

  29. S. Chang, Chem. Rev. 97 (1997) 1017.

    Article  Google Scholar 

  30. C. Rotsch and M. Radmacher, Langmuir 13 (1997) 2825.

    Article  CAS  Google Scholar 

  31. E.A. Hassan, W.F. Heinz, M.D. Antonik, N.P. D'Costa, S. Nagaswaran, C.A. Schoenenberger and J.H. Hoh, Biophys. J. 5 (1998) 743.

    Google Scholar 

  32. Q. Zhong, D. Innis, K. Kjoller and V.B. Elings, Surf. Sci. Lett. 290 (1993) L688.

    Article  CAS  Google Scholar 

  33. R. Brandsch, G. Bar and M.H. Whangbo, Langmuir 13 (1997) 6349.

    Article  CAS  Google Scholar 

  34. G. Bar, R. Brandsch and M.H. Whangbo, Langmuir 14 (1998) 7343.

    Article  CAS  Google Scholar 

  35. N. Batina, L.M. Ioffe and Y.G. Borodko, in: Catalyst Deactivation, Stud. Surf. Sci. Catal., Vol. 111, eds. C.H. Bartholomew and G.A. Fuentes (Elsevier, Amsterdam, 1997) p. 655.

    Google Scholar 

  36. T. López, M. Asomoza and R. Gómez, Mater. Lett. 19 (1994) 199.

  37. R.G. Haldeman and M.C. Botty, J. Phys. Chem. 63 (1959) 4489.

    Article  Google Scholar 

  38. A. Sárkány, H. Lieske, T. Szilágyi and L. Tóth, in: 8th Int. Congr. Catal., Berlin, Vol. 2 (1984) p. 613.

    Google Scholar 

  39. G. Webb, Catal. Today 7 (1990) 139.

    Article  CAS  Google Scholar 

  40. C.L. Li, O. Navaro, E. Muñoz, J.L. BoldÚ, X. Bokhimi, J.A. Wang, T. Lopez and R. Gómez, Appl. Catal., in press.

  41. A.B. Phadnis and V.V. Deshpande, Thermochim. Acta 62 (2983) 361.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Novaro, O., Bokhimi, X. et al. Coke formation on an industrial reforming Pt–Sn/γ‐Al2O3 catalyst. Catalysis Letters 65, 209–216 (2000). https://doi.org/10.1023/A:1019042027077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019042027077

Navigation