Skip to main content
Log in

Gyroscopic Precession and Inertial Forces in Axially Symmetric Stationary Spacetimes

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the phenomenon of gyroscopic precession and the analogues of inertial forces within the framework of general relativity. Covariant connections between the two are established for circular orbits in stationary spacetimes with axial symmetry. Specializing to static spacetimes, we prove that gyroscopic precession and centrifugal force both reverse at the photon orbits. Simultaneous non-reversal of these in the case of stationary spacetimes is discussed. Further insight is gained in the case of static spacetime by considering the phenomena in a spacetime conformal to the original one. Gravi-electric and gravi-magnetic fields are studied and their relation to inertial forces is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Iyer, B. R., and Vishveshwara, C. V. (1993). Phys. Rev. D48, 5706.

    Google Scholar 

  2. Abramowicz, M. A., Nurowski, P., and Wex, N. (1993). Class. Quantum Grav.10, L183.

    Google Scholar 

  3. Abramowicz, M. A., and Prasanna, A. R. (1990). Mon. Not. R. Astr. Soc.245, 720.

    Google Scholar 

  4. Prasanna, A. R. (1991). Phys. Rev. D43, 1418.

    Google Scholar 

  5. Abramowicz, M. A. (1990). Mon. Not. R. Astron. Soc.245, 733.

    Google Scholar 

  6. Rajesh Nayak, K., and Vishveshwara, C. V. (1997). Gen. Rel. Grav.29, 291.

    Google Scholar 

  7. Rajesh Nayak, K., and Vishveshwara, C. V. (1996). Class. Quantum Grav.13, 1173.

    Google Scholar 

  8. Honig, E., Schücking, E. L., and Vishveshwara, C. V. (1974). J. Math. Phys.15, 774.

    Google Scholar 

  9. Greene, R. D., Schücking, E. L., and Vishveshwara, C. V. (1975). J. Math. Phys.16, 153.

    Google Scholar 

  10. Abramowicz, M. A., Carter, B., and Lasota, J. P. (1988). Gen. Rel. Grav.20, 1173.

    Google Scholar 

  11. Abramowicz, M. A., Nurowski, P., and Wex, N. (1995). Class. Quantum Grav.12, 1467.

    Google Scholar 

  12. de Felice, F. (1991). Mon. Not. R. Astr. Soc.252, 197.

    Google Scholar 

  13. Semerak, O. (1995). Nuovo Cimento B110, 973.

    Google Scholar 

  14. Barrabes, C., Boisseau, B., and Israel, W. (1995). Mon. Not. R. Astr. Soc.276, 432.

    Google Scholar 

  15. Semerak, O. (1996). Class. Quantum Grav.13, 2987.

    Google Scholar 

  16. Semerak, O. (1997). Gen. Rel. Grav.29, 153.

    Google Scholar 

  17. de Felice, F. (1994). Class. Quantum Grav.11, 1283.

    Google Scholar 

  18. Bini, D., Carini, P., Jantzen, R. T. (1997). Int. J. Mod. Phys. D6, 1.

    Google Scholar 

  19. Bini, D., Carini, P., Jantzen, R. T. (1997). Int. J. Mod. Phys. D6, 143.

    Google Scholar 

  20. Embacher, F. (1984). Found. Phys.14, 721.

    Google Scholar 

  21. Thorne, K. S., Price, R. H., Macdonald, D. A., eds. (1986). Black Holes: The Membrane Paradigm(Yale University Press, New Haven).

    Google Scholar 

  22. Jantzen, R. T., Carini, P., and Bini, D. (1992). Ann. Phys. (NY)215, 1.

    Google Scholar 

  23. Ciufolini, I., and Wheeler, J. A. (1995). Gravitation and Inertia(Princeton University Press, Princeton).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, K.R., Vishveshwara, C.V. Gyroscopic Precession and Inertial Forces in Axially Symmetric Stationary Spacetimes. General Relativity and Gravitation 30, 593–615 (1998). https://doi.org/10.1023/A:1018870208493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018870208493

Navigation