Advertisement

Foundations of Physics

, Volume 28, Issue 9, pp 1443–1451 | Cite as

Formulation of a Relativistic Theory without Constraints

  • Matej Pavšič
Article
  • 55 Downloads

Abstract

A relativistic, i.e., Lorentz co-variant theory without constraints is formulated. This is possible if we allow the dynamical variables to depend on an invariant parameter τ. Thus we obtain a dynamical theory in spacetime, called relativistic dynamics. First the case of a point particle, and then of extended objects such as membranes of arbitrary dimensions are considered.

Keywords

Dynamical Variable Relativistic Theory Dynamical Theory Arbitrary Dimension Point Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. A. M. Dirac, Proc. R. Soc. London A 268, 57 (1962). J. Hughes, J. Liu, and J. Polchinski, Phys. Lett. B 180, 370 (1986). E. Bergshoeff, E. Sezgin, and P. K. Townsend, Phys. Lett. B 189, 75 (1987); 209, 451 (1988). E. Bergshoeff and E. Sezgin, Ann. Phys. 185, 330 (1988). M. P. Blencowe and M. J. Duff, Nucl. Phys. B 310, 387 (1988). U. Marquard and M. Scholl, Phys. Lett. B 209, 434 (1988). A. Karlhede and U. LindstroÈ m, Phys. Lett. B 209, 441 (1988). A. A. Bytsenko and S. Zerbini, Mod. Phys. Lett. A 8, 1573 (1993). A. Aurilia and E. Spallucci, Class. Quantum Gravit. 10, 1217 (1993).Google Scholar
  2. 2.
    V. Fock, Phys. Z. Sowj. 12, 404 (1937). E. C. G. Stueckelberg, Helv. Phys. Acta 14, 322 (1941). J. Schwinger, Phys. Rev. 82, 664 (1951); 14, 588 (1941); 15, 23 (1942). R. P. Feynman, Phys. Rev. 84, 108 (1951). L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973). E. R. Collins and J. R. Fanchi, Nuovo Cimento A 48, 314 (1978). L. P. Horwitz and C. Prion, Helv. Phys. Acta 46, 316 (1973). E. R. Collins and J. R. Fanchi, Nuovo Cimento A 48, 314 (1978). L. P. Horwitz, Found. Phys. 18, 1159 (1988); 22, 421 (1992). H. Enatsu, Prog. Theor. Phys. 30, 236 (1963); Nuovo Cimento A 95, 269 (1986). J. R. Fanchi, Phys. Rev. D 20, 3108 (1979). R. Kubo, Nuovo Cimento A 85, 293 (1985). N. Shnerb and L. P. Horwitz, Phys. Rev. A 48, 4068 (1993).Google Scholar
  3. 3.
    M. Pavšič, Found. Phys. 21, 1005 (1992); Nuovo Cimento A 104, 1337 (1991); Doga, Turk. J. Phys. 17, 768 (1993).Google Scholar
  4. 4.
    M. Pavšič, Found. Phys. 25, 819 (1995); Nuovo Cimento A 108, 221 (1995).Google Scholar
  5. 5.
    P. S. Howe and R. W. Tucker, J. Phys. A: Math. Gen. 10, L155 (1977).Google Scholar
  6. 6.
    M. Pavšič, Class. Quantum Gravit. 5, 247 (1988).Google Scholar
  7. 7.
    M. Pavšič, Found. Phys. 26, 159 (1996).Google Scholar
  8. 8.
    M. Pavšič, Nuovo Cimento 110, 369 (1997).Google Scholar
  9. 9.
    J. Hong, J. Kim, and P. Sikivie, Phys. Rev. Lett. 39, 2611 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Matej Pavšič

There are no affiliations available

Personalised recommendations