Skip to main content
Log in

Mathematical model for laser densification of ceramic coating

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A theoretical study for the densification of ceramic coating processed with a moving transmission electron microscopy (TEM00) mode laser beam is conducted. A three-dimensional quasi-steady state heat conduction model is developed by applying the Fourier integral transform method. An approximate expression for temperature distribution is also presented and the calculations with it are found to be in good agreement with the exact solutions within a limited region around the laser spot. The depth of the heat-affected zone in ZrO2 coating is calculated with this model. Moreover, a working range for ZrO2 densification is determined by varying the laser beam power, spot size and scanning velocity. The heat-affected zone is found to be confined within a depth of 50 μm from the surface and the vitrified layers are fully densified for particles of initial radius 5 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. CLINE and T. R. ANTHONY, J. Appl. Phys. 48 (1977) 3895.

    Article  CAS  Google Scholar 

  2. M. LAX, ibid. 48 (1977) 3919.

    Article  CAS  Google Scholar 

  3. Idem., Appl. Phys. Lett. 33 (1978) 786.

    Article  Google Scholar 

  4. H. S. CARSLAW and J. C. JAEGER, “Conduction of heat in solids”, 2nd edition (Clarendon Press, Oxford, 1959) p. 10.

    Google Scholar 

  5. L. D. HESS, R. A. FORBER, S. A. KOKOROWSHI and G. L. OLSON, in Proceedings of The Society of Photo-Optical Instrumentation Engineers, edited by J. F. Ready (Society of Photo-Optical Instrumentation Engineers, Washington DC, 1980) p. 31.

    Google Scholar 

  6. Y. I. NISSIM, A. LIETOILA, R. B. GOLD and J. F. R. GIBONS, J. Appl. Phys. 51 (1980) 274.

    Article  CAS  Google Scholar 

  7. J. E. MOODY and R. H. HENDEL, ibid. 53 (1982) 4364.

    Article  CAS  Google Scholar 

  8. M. F. MODEST and H. ABAKIANS, J. Heat Transfer 108 (1986) 597.

    Article  CAS  Google Scholar 

  9. C. MAIER, P. SCHAAF and U. GONSER, Mater. Sci. Engng A150 (1992) 271.

    Article  CAS  Google Scholar 

  10. D. J. SANDERS, Appl. Optics 23 (1984) 30.

    Article  CAS  Google Scholar 

  11. A. KAR and J. MAZUMBER, J. Appl. Phys. 65 (1989) 2923.

    Article  Google Scholar 

  12. O. MANCA, B. MORRONE and V. NASO, Int. J. Heat Mass Transfer 38 (1995) 1305.

    Article  Google Scholar 

  13. TAIPAU CHIA, L. L. HENCH, CHAOBIN QIN and C. K. HSIEH, Mater. Res. Soc. Symp. Proc. 180 (1990) 819.

    Article  CAS  Google Scholar 

  14. M. OKUTOMI and K. TSUKAMOTO, Proc. LAMP (May 1987) 595.

  15. T. KASAI, Y. OZAKI, H. NOD, K. KAWASAKI and K. TANEMOTO, J. Amer. Ceram. Soc. 72 (1989) 1716.

    Article  CAS  Google Scholar 

  16. A. KAR, J. E. SCOTT and W. P. LATHAM, J. Appl. Phys. 80 (1996) 667.

    Article  CAS  Google Scholar 

  17. M. NECATI OZISIK, “Heat conduction” (John Wiley and Sons, New York, 1980) p. 632.

    Google Scholar 

  18. J. HECHT, “Understanding laser” (Howard W. Sams & Company, Indianapolis, 1988) p. 83.

    Google Scholar 

  19. D. W. RICHERSON, “Modern ceramic engineering” (Marcel Dekker, Inc., New York, 1982) p. 219, p. 531.

    Google Scholar 

  20. W. D. KINGERY, H. K. BOWEN and D. R. UHLMANN, “Introduction to ceramics” (John Wiley & Sons, New York, 1976) p. 490.

    Google Scholar 

  21. A. PETITBON and D. GUIGNOT, U. FISCHER and J. M. GUILLEMONT, Mater. Sci. Engng A121 (1989) 545.

    Article  Google Scholar 

  22. Y. S. TOULOLKIAN (ed.) “Thermophysical properties of the high temperature solid materials. Vol. 4, oxides and their solutions and mixtures, Part I: Simple oxygen compounds and their mixture” (The Macmillan Company, New York, 1967) p. 571.

    Google Scholar 

  23. N. P. BANSAL and R. H. DOREMUS, “Handbook of glass properties” (Academic Press, Inc., Orlando, 1986) p. 107.

    Google Scholar 

  24. J. D. WALTON, jr. “Radome engineering handbook design and principles” (Marcel Dekker, Inc., New York, 1970) p. 281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, J., Kar, A. Mathematical model for laser densification of ceramic coating. Journal of Materials Science 32, 6269–6278 (1997). https://doi.org/10.1023/A:1018693212407

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018693212407

Keywords

Navigation