Journal of Materials Science

, Volume 32, Issue 16, pp 4397–4403 | Cite as

Investigation of debonding processes in particle-filled polymer materials by acoustic emission: Part I Acoustic emission and debonding stress

  • A ZHUK


Debonding processes in model composites under tensile deformation were investigated by acoustic emission analysis. The composites were prepared from epoxy and polyethylene matrix filled with glass beads of various sizes and with different coatings. The detected acoustic emission signals were identified as debonding processes at the filler–matrix interphase, and are discussed as a rupture process on the basis of the Weibull probability distribution function. For the model composites, the effect of the filler size is discussed using a theory based on Griffith’s criterion of rupture.


Acoustic Emission Glass Bead Acoustic Emission Signal Epoxy Composite Rupture Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. ZHUK, V. G. KNUNYANTS, V. G. OSHMYAN and V. A. TOPOLKARAEV, J. Mater. Sci. 28 (1993) 4595.CrossRefGoogle Scholar
  2. 2.
    A. A. GRIFFITH, Trans. R. Soc. Lond. A221 (1920) 163.Google Scholar
  3. 3.
    A. N. GENT, J. Mater. Sci. 15 (1980) 2884.CrossRefGoogle Scholar
  4. 4.
    A. N. GENT and BYOUNGKYEU PARK, ibid. 19 (1984) 1947.CrossRefGoogle Scholar
  5. 5.
    W. WEIBULL, J. Appl. Mech. 18 (1951) 293.Google Scholar
  6. 6.
    S. S. MINKO, I. LUZINOV, A. VORONOV and R. MUSIY, Ukrain. Chemich. Z. 60 (1994) 727.Google Scholar
  7. 7.
    S. S. MINKO, I. LUZINOV, A. VORONOV and V. TOKAREV, “Polymer at Interphase, Synthesis, Adsorption, Conformation and Reactivity”, a report. State University Lvivska Polytechnika (1994).Google Scholar
  8. 8.
    R. KRAUS, A. ZHUK, I. LUZINOV, S. MINKO and W. WILKE, in “ECCM CTS2 2nd European Conference on Composite Materials, Composite Testing and Standardisation”, Hamburg edited by P. J. Hogg, K. Schulta and H. Wittich (Woodhead, Cambridge, 1994).Google Scholar
  9. 9.
    L. LORENZO and H. T. HAHN, J. Acoust. Emission 5 (1986) 15.Google Scholar
  10. 10.
    M. FAUDREE, E. BAER, A. HILTNER and J. COLLISTER, J. Compos. Mater. 22 (1988) 1170.Google Scholar
  11. 11.
    S. SHIROUZU, S. SHICHIJYO, S. TAKI, K. MATSUSHIGE, K. TAKAHASHI and T. TAKEMURA, Polym. J. 16 (1984) 223.CrossRefGoogle Scholar
  12. 12.
    M. BRATRICH, B. HEISE, R. KRAUS, G. VOLSWINKLER, W. WILKE, G. BODOR and A. KALLÓ, Müanyag és Gumi 28 (1991) 273.Google Scholar
  13. 13.
    A. PAYER, Doctoral thesis, University of Ulm, in preparation (1997).Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 2
  • A ZHUK
    • 3
  1. 1.Abteilung Experimentelle PhysikUniversitat UlmUlmGermany
  2. 2.Division of Applied ScienceHarvard UniversityCambridgeUSA
  3. 3.Department of Physical Chemistry InstituteUkrainian Academy of SciencesLvivUkraine

Personalised recommendations