Skip to main content
Log in

Virtues and Limitations of Markovian Master Equations with a Time-Dependent Generator

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A Markovian master equation with time-dependent generator is constructed that respects basic constraints of quantum mechanics, in particular the von Neumann conditions. For the case of a two-level system, Bloch equations with time-dependent parameters are obtained. Necessary conditions on the latter are formulated. By employing a time-local counterpart of the Nakajima–Zwanzig equation, we establish a relation with unitary dynamics. We also discuss the relation with the weak-coupling limit. On the basis of a uniqueness theorem, a standard form for the generator of time-local master equations is proposed. The Jaynes–Cummings model with atomic damping is solved. The solution explicitly demonstrates that reduced dynamics can be described by time-local master equations only on a finite time interval. This limitation is caused by divergencies in the generator. A limit of maximum entropy is presented that corroborates the foregoing statements. A second limiting case demonstrates that divergencies may even occur for small perturbations of the weak-coupling regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17:821 (1976); V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan, Rep. Math. Phys. 13:149 (1978).

    Google Scholar 

  2. G. Lindblad, Commun. Math. Phys. 48:119 (1976).

    Google Scholar 

  3. K. Kraus, Ann. Phys. 64:311 (1971).

    Google Scholar 

  4. E. B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976).

    Google Scholar 

  5. R. Alicki and K. Lendi, in Lecture Notes in Physics, W. Beiglböck, ed. (Springer, Berlin, 1987), Vol. 286.

    Google Scholar 

  6. K. Lendi, J. Phys. A: Math. Gen. 20:15 (1987).

    Google Scholar 

  7. W.H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).

    Google Scholar 

  8. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).

    Google Scholar 

  9. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  10. R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 1973).

    Google Scholar 

  11. A. J. van Wonderen and K. Lendi, J. Stat. Phys. 80:273 (1995).

    Google Scholar 

  12. L. van Hove, Physica 21:517 (1955); E. B. Davies, Commun. Math. Phys. 33:171 (1973); Commun. Math. Phys. 39:91 (1974); Math. Ann. 219:147 (1976).

    Google Scholar 

  13. K. Hepp and E. H. Lieb, Helv. Phys. Acta 46:573 (1973).

    Google Scholar 

  14. F. Haake and M. Lewenstein, Phys. Rev. A 27:1013 (1983).

    Google Scholar 

  15. S. Gnutzmann and F. Haake, Z. Phys. B 101:263 (1996).

    Google Scholar 

  16. W. J. Munro and C. W. Gardiner, Phys. Rev. A 53:2633 (1996).

    Google Scholar 

  17. S. Gao, Phys. Rev. Lett. 79:3101 (1997); H. M. Wiseman and W. J. Munro, Phys. Rev. Lett. 80:5702 (1998); S. Gao, Phys. Rev. Lett. 80:5703 (1998); G. W. Ford and R. F. OConnell, Phys. Rev. Lett. 82:3376 (1999); S. Gao, Phys. Rev. Lett. 82:3377 (1999).

    Google Scholar 

  18. B. M. Garraway, Phys. Rev. A 55:2290 (1997).

    Google Scholar 

  19. F. Haake and M. Lewenstein, Phys. Rev. A 28:3606 (1983); F. Haake and R. Reibold, Phys. Rev. A 32:2462 (1985).

    Google Scholar 

  20. A. Suárez, R. Silbey, and I. Oppenheim, J. Chem. Phys. 97:5101 (1992).

    Google Scholar 

  21. E. B. Davies and H. Spohn, J. Stat. Phys. 19:511 (1978).

    Google Scholar 

  22. R. W. F. van der Plank and L. G. Suttorp, Phys. Rev. A 53:1791 (1996); Phys. Rev. A 54:2464 (1996).

    Google Scholar 

  23. H.-P. Breuer, B. Kappler, and F. Petruccione, Phys. Rev. A 59:1633 (1999).

    Google Scholar 

  24. N. G. van Kampen, J. Stat. Phys. 78:299 (1995).

    Google Scholar 

  25. J. G. Peixoto de Faria and M. C. Nemes, J. Phys. A: Math. Gen. 31:7095 (1998).

    Google Scholar 

  26. R. Boscaino, F. M. Gelardi, and J. P. Korb, Phys. Rev. B 48:7077 (1993).

    Google Scholar 

  27. R. N. Shakhmuratov and A. Szabo, Phys. Rev. B 48:6903 (1993).

    Google Scholar 

  28. D. Kohen, C. C. Marston, and D. J. Tannor, J. Chem. Phys. 107:5236 (1997).

    Google Scholar 

  29. T. Banks, L. Susskind, and M. E. Peskin, Nucl. Phys. B 244:125 (1984).

    Google Scholar 

  30. F. Haake, in Springer Tracts in Modern Physics, G. Höhler, ed. (Springer, Berlin, 1973), Vol. 66, p. 98.

    Google Scholar 

  31. A. Fuliński and W. J. Kramarczyk, Physica 39:575 (1968).

    Google Scholar 

  32. V. P. Vstovsky, Phys. Lett. A 44:283 (1973).

    Google Scholar 

  33. H. Grabert, P. Talkner, and P. Hänggi, Z. Phys. B 26:389 (1977).

    Google Scholar 

  34. N. Hashitsume, F. Shibata, and M. Shingū, J. Stat. Phys. 17:155 (1977).

    Google Scholar 

  35. M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic, New York, 1975), Vol. II, p. 13.

    Google Scholar 

  36. A. J. van Wonderen, Phys. Rev. A 56:3116 (1997); F. Farhadmotamed, A. J. van Wonderen, and K. Lendi, J. Phys. A: Math. Gen. 31:3395 (1998).

    Google Scholar 

  37. H.-I. Yoo and J. H. Eberly, Phys. Rep. 118:239 (1985); B. W. Shore and P. L. Knight, J. Mod. Opt. 40:1195 (1993).

    Google Scholar 

  38. R. Kühne and P. Reineker, Z. Phys. B 31:105 (1978); P. Ha¢nggi, Z. Phys. B 34:409 (1979).

    Google Scholar 

  39. P. L. Knight and P. W. Milonni, Phys. Lett. A 56:275 (1976); K. Wo_dkiewicz and J. H. Eberly, Ann. Phys. (NY) 101:574 (1976).

    Google Scholar 

  40. V. Gorini, M. Verri, and A. Frigerio, Physica A 161:357 (1989).

    Google Scholar 

  41. P. Pechukas, Phys. Rev. Lett. 73:1060 (1994); R. Alicki, Phys. Rev. Lett. 75:3020 (1995); P. Pechukas, Phys. Rev. Lett. 75:3021 (1995).

    Google Scholar 

  42. A. Royer, Phys. Rev. Lett. 77:3272 (1996).

    Google Scholar 

  43. G. Lindblad, J. Phys. A: Math. Gen. 29:4197 (1996); J. Math. Phys. 39:2763 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Wonderen, A.J., Lendi, K. Virtues and Limitations of Markovian Master Equations with a Time-Dependent Generator. Journal of Statistical Physics 100, 633–658 (2000). https://doi.org/10.1023/A:1018671424739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018671424739

Navigation