Journal of Materials Science

, Volume 32, Issue 16, pp 4405–4410 | Cite as

Investigation of debonding processes in particle-filled polymer materials by acoustic emission: Part II Acoustic emission amplitude and energy release by debonding

  • A ZHUK


A theoretical description of the debonding process is presented by using Griffith’s criterion of rupture, that is applied to the balance of free energy during the debonding of a spherical filler particle from the polymer matrix. Debonding processes in model composites prepared from epoxy and polyethylene matrix filled with glass beads of various sizes have been investigated by acoustic emission analysis. The amplitude distribution for all AE events at the debonding stress was calculated and fitted by a Weibull distribution function. By comparing the results of debonding stress with the measured amplitudes, the influence of the different filler coatings on the energy balance of debonding can be discussed on the basis of the Griffith theory.


Acoustic Emission Amplitude Distribution Deformation Energy Epoxy Composite Acoustic Emission Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. WOLTERS, “Anwendung der Schallemissions-Meßtechnik zum Beschreiben von Versagensmechanismen in partikelgefûllten Thermoplasten”, Fortschr.-Ber. VDI Reihe 5 Nr. 163, VDI Verlag, Düsseldorf (1989).Google Scholar
  2. 2.
    A. A. GRIFFITH, Trans. R. Soc. Lond. A221 (1920) 163.Google Scholar
  3. 3.
    A. N. GENT, J. Mater. Sci. 15 (1980) 2884.CrossRefGoogle Scholar
  4. 4.
    A. N. GENT and BYOUNGKYEU PARK, ibid. 19 (1984) 1947.CrossRefGoogle Scholar
  5. 5.
    A. V. ZHUK, V. G. KNUNYANTS, V. G. OSHMYAN and V. A. TOPOLKARAEV, ibid. 28 (1993) 4595.CrossRefGoogle Scholar
  6. 6.
    R. KRAUSS, W. WILKE, A. ZHUK, I. LUZINOV, S. MINKO and A. VORONOV, ibid. 32 (1997).Google Scholar
  7. 7.
    A. A. POLLOCK, “International Advances in Nondestructive Testing”, Vol. 7, Gordon and Breach Science, (1981) pp. 21539.Google Scholar
  8. 8.
    L. LORENZO, H. T. HAHN, J. Acoust. Emission 5 (1986) 15.Google Scholar
  9. 9.
    W. WEIBULL, J. Appl. Mech. 18 (1951) 293.Google Scholar
  10. 10.
    Y. H. WU, M. H. YANG, J. Y. KUO and S. P. CHANG, in “SPI International Symposium Acoustic Emission from Reinforced Composites”, edited by G. C. Sih and S. E. Hsu, Vol. 2, Montreal (VNU Science, Utrecht, 1987).Google Scholar
  11. 11.
    R. KRAUS, A. ZHUK, I. LUZINOV, S. MINKO and W. WILKE, in “ECCM CTS2 2nd European Conference on Composite Materials, Composite Testing and Standardisation”, edited by P. J. Hogg, K. Schulto and H. Wittach, Hamburg (Woodhead, Cambridge, 1994).Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 2
  • A ZHUK
    • 3
  1. 1.Abteilung Experimentelle PhysikUniversitat UlmUlmGermany
  2. 2.Division of Applied ScienceHarvard UniversityCambridgeUSA
  3. 3.Department of Physical Chemistry InstituteUkrainian Academy of SciencesLvivUkraine

Personalised recommendations