Journal of Materials Science

, Volume 32, Issue 12, pp 3101–3111 | Cite as

Carbothermal synthesis of titanium carbide using ultrafine titania powders

  • R Koc
  • J. S Folmer


The synthesis of titanium carbide (TiC) by the carbothermal reduction of carbon coated titanium dioxide (TiO2), a novel synthesis process, and titanium dioxide (TiO2) mixed with carbon black was investigated. A high surface area (64 m2g-1) TiO2 powder consisting of anatase and rutile phases was used for starting powders. The carbon coated method is a two-step process that utilizes a precursor derived from decomposing propylene (C3H6) and depositing carbon on the TiO2 particles. TiO2 powders were also mechanically mixed with carbon black for comparison. Both starting precursors and mixtures were reacted in a tube furnace for 2 and 4 h at temperatures of 1100°C to 1550°C under 1 l min-1 flowing argon. The TiC powders were characterized using thermogravimetric analysis (TGA), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analyser, chemical analysis (oxygen and carbon) and transmission electron microscopy (TEM). The carbon coating process provides high contact area between the reactants which results in a TiC product with lower oxygen content (0.6 wt%), finer particle size (0.1 μm), and uniform shape when synthesized at 1550°C for 4 h.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. N. MIHAILESCU, M. L. DE GIORGE, C. H. BOULMER-LEBORGNE and S. URDEA, J. Appl. Phys. 75 (1994) 5286.Google Scholar
  2. 2.
    S. SHIMADA and M. KOZEKI, J. Mater. Sci. 28 (1994) 1869.Google Scholar
  3. 3.
    L. F. STASYUK and V.S. NESPHOR, Poroshkovaya Metallurgiya 8 (1987) 627.Google Scholar
  4. 4.
    I. J. McCOLM and N. J. CLARK, “High performance ceramics”, (Blackie, London, 1986) p. 60.Google Scholar
  5. 5.
    D. D. HARBUCK, C. F. DAVIDSON and B. MONTE, J. Metals 38 (1986) 47.Google Scholar
  6. 6.
    B. SCHULTRICH, L. M. BERGER, J. HENKE and A. OSWALD, in Proceedings of the 2nd Plasma-Technik-Symposium, Lucerne, 57 June, 1991, Vol. 2 (Plasma-Technik, Wohlen, Switzerland, 1991) p. 363.Google Scholar
  7. 7.
    K. THORNE, S. TING and C. J. CHU, J. Mater. Sci. 27 (1992) 4406.Google Scholar
  8. 8.
    T. LICKO, V. FIGUSCH and J. PUCHYOVA, J. Eur. Ceram. Soc. 5 (1989) 25.Google Scholar
  9. 9.
    S. DUNMEAD, W. MOORE and A. WEIMER, US Patent d5,380,688 (1993).Google Scholar
  10. 10.
    S. D. DUNMEAD, Z. A. MUNIR and J. B. HOLT, J. Mater. Sci. 26 (1991) 2410.Google Scholar
  11. 11.
    G. A. MEERSON and J. M. LIPKES, Russian J. Appl. Chem. 18 (1945) 24.Google Scholar
  12. 12.
    G. A. MEERSON and O. E. KREIN, ibid. 25 (1952) 134.Google Scholar
  13. 13.
    E. K. STORMS, “The refractory carbides”, Refractory Materials Series, Vol. 2 (Academic Press, New York, 1967) p. 1.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • R Koc
    • 1
  • J. S Folmer
  1. 1.Department of Mechanical Engineering and Energy ProcessesSouthern Illinois UniversityCarbondaleUSA

Personalised recommendations