Skip to main content
Log in

Effect of whisker aspect ratio on the density and fracture toughness of SiC whisker-reinforced Si3N4

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Controlling the suspension properties prior to slip casting optimizes the homogeneity, density and fracture toughness of silicon carbide whisker reinforced silicon nitride (SiCw/Si3N4). Further improvements in the mechanical properties are realized by combining ball milling with ultrasonic dispersion of the composite suspension. Ball milling reduces the SiCw aspect ratio from 25 to 15 which in turn increases the dispersion of the whiskers within the suspension, resulting in increases in the green and sintered density, along with the fracture toughness. In a binderless process, 20 volume% reduced aspect ratio (r = 15) SiCw/Si3N4 can be densified to 95% theoretical density by pressureless sintering using 8% Y2O3 and 2% Al2O3 by weight as sintering aids. These composites had measured values of fracture toughness from 9–10.5 MPa · m1/2, representing an average increase of approximately 30% over the fracture toughness for monolithic Si3N4 processed under identical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Buljan, J. G. Baldoni and M. L. Huckabee, Amer. Ceram. Soc. Bull. 66(2) (1987) 347.

    Google Scholar 

  2. R. K. Mcgeary, J. Amer. Ceram. Soc. 44(10) (1961) 513.

    Google Scholar 

  3. F. F. Lange and K. T. Miller, ibid. 70(12) (1987) 896.

    Google Scholar 

  4. F. F. Lange, ibid. 72 (1989) 3.

    Google Scholar 

  5. B. V. Velamekanni and F. F. Lange, ibid. 74 (1991) 166.

    Google Scholar 

  6. J. C. Chang, B. V. Velamekanni, F. F. Lange and D. S. Pearson, ibid. 74 (1991) 2201.

    Google Scholar 

  7. M. J. Crimp and D. A. Oppermann, in Proc. Am. Ceram. Soc.: Science, Technology, and Applications of Colloidal Suspensions (1995) p. 91.

  8. M. J. Crimp, J. Mater. Sci. Eng. A192/193 (1995) 633.

    Google Scholar 

  9. B. V. Derjaguin and L. D. Landau, Acta Physicochim. URSS. 14 (1941) 633.

    Google Scholar 

  10. E. J. W. Verwey and J. Th. G. Overbeek, “Theory of the Stability of the Lyophobic Colloids” (Elsevier, Amsterdam, 1948).

    Google Scholar 

  11. R. Hogg, T. W. Healy and D. W. Fuerstenau, Trans. Faraday Soc. 66 (1966) 490.

    Google Scholar 

  12. R. J. Hunter, “Foundations in Colloid Science,” Vol. 1 (Clarendon Press, Oxford, 1991).

    Google Scholar 

  13. K. A. Kusters, S. E. Pratsinis, S. G. Thoma and D. M. Smith, Chem. Eng. Sci. 48(24) (1993) 4119.

    Google Scholar 

  14. D. W. Johnson, D. J. Nitti, and L. Barrin, Am. Ceram. Soc. Bull. 51 (1972) 896.

    Google Scholar 

  15. K. T. Faber and A. G. Evans, Acta Metall. 31(4) (1983) 565.

    Google Scholar 

  16. E. A. Holm and M. J. Cima, J. Amer. Ceram. Soc. 72(2) (1989) 303.

    Google Scholar 

  17. J. V. Milewski, Adv. Ceram. Mater. 1(1) (1986) 36.

    Google Scholar 

  18. T. N. Tiegs and D. M. Dillard, J. Amer. Ceram. Soc. 73(5) (1990) 1440.

    Google Scholar 

  19. M. J. Hoffmann, A. Nagel, P. Grell and G. Petzow, ibid. 72(5) (1989) 765.

    Google Scholar 

  20. P. D. Shalek, J. J. Petrovic, G. F. Hurley and F. D. Gac, Ceram. Soc. Bull. 65 (1986) 351.

    Google Scholar 

  21. J. P. Singh, K. C. Goretta, K. S. Kupperman, J. L. Routbort and J. F. Rhodes, Adv. Ceram. Materials 3(4) (1988) 357.

    Google Scholar 

  22. B. A. Wilson and M. J. Crimp, Langmuir 9(11) (1993) 2836.

    Google Scholar 

  23. F. F. Lange, J. Amer. Ceram. Soc. 67(2) (1984) 83.

    Google Scholar 

  24. F. W. Dynys and J. W. Halloran, ibid. 66(9) (1983) 655.

    Google Scholar 

  25. H. Kamiya, K. Isomura, G. Jimbo, T. Hotta and J. Tsubaki, J. Ceram. Soc. Japan 101(3) (1993) 285.

    Google Scholar 

  26. H. Liu, Karl-L. Weisskopf and G. Petzow, J. Amer. Ceram. Soc. 72 (1989) 559.

    Google Scholar 

  27. P. F. Becher, Chen-Hway Hsueh, P. Angelini and T. N. Tiegs, ibid. 71 (1988) 1050.

    Google Scholar 

  28. C. J. Shih, J. M. Yang and A. Ezis, Composites Sci. and Tech. 43 (1992) 13.

    Google Scholar 

  29. K. Ueno, S. Sodeoka and J. Hiroka, J. Ceram. Soc. Japan, Int. Ed. 100 (1992) 525.

    Google Scholar 

  30. A. J. Pyzic and D. F. Carroll, “Annual Review of Materials Science,” edited by M. C. Flemmings, J. B. Watchman, Jr., E. N. Kaufmann and J. A. Gioordmaine (Annual Reviews Inc., Palo Alto, CA, USA, 1995) p. 189.

    Google Scholar 

  31. G. M. Crosbie, J. M. Nicholson and E. D. Stiles, Ceram. Soc. Bull. 68 (1989) 1202.

    Google Scholar 

  32. Y. M. Yeh, M. S. Thesis, Michigan State University, 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sneary, P.R., Yeh, Z. & Crimp, M.J. Effect of whisker aspect ratio on the density and fracture toughness of SiC whisker-reinforced Si3N4. Journal of Materials Science 36, 2529–2534 (2001). https://doi.org/10.1023/A:1017998503025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017998503025

Keywords

Navigation