Journal of Applied Electrochemistry

, Volume 31, Issue 9, pp 1033–1039 | Cite as

Comparative study on electrochemical techniques for determination of hydrogen diffusion coefficients in metal hydride electrodes

  • X. Yuan
  • N. Xu


The constant potential discharge technique, constant current discharge technique and electrochemical impedance spectroscopy were employed to determine the hydrogen diffusion coefficient in a metal hydride electrode of MlNi3.65Co0.75Mn0.4Al0.2 alloy with various depth of discharge (DOD) at room temperature and with a specific DOD at various temperatures. The results were compared and the advantages and disadvantages of these techniques were also discussed.

electrochemical techniques hydrogen diffusion coefficient metal hydride electrode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.-M. Kim, H. Lee, K.-J. Jang and J.-Y. Lee, J. Electrochem. Soc. 145 (1998) 3387.Google Scholar
  2. 2.
    M.H.J. Van Rijiswick, in A.F. Anderesen and A.J. Maeland (Eds.), 'Hydride for Energy Storage' (Pergamon Press, Oxford, 1978), p. 261.Google Scholar
  3. 3.
    T. Nishna, H. Ura and I. Uchida, J. Electrochem. Soc. 144 (1997) 1273.Google Scholar
  4. 4.
    R.C. Bowman, D.M. Gruen and M.H. Mendelsohn, Solid State Commun. 32 (1979) 501.Google Scholar
  5. 5.
    E. Khodosov, A. Linnik, G. Kobsenko and V. Ivanchenko, in Proceedings of the 2nd international congress on 'Hydrogen in Metals', (Paris, 1977) (Pergamon Press, Oxford, 1977), paper 1D10.Google Scholar
  6. 6.
    E. Lebsanft, D. Richter and J.M. Topler, Z. Phys. Chem. N.F. 116 (1979) 175.Google Scholar
  7. 7.
    P. Fischer, A. Furrer, G. Busch and L. Schlapbach, Helv. Phys. Acta. 50 (1977) 421.Google Scholar
  8. 8.
    G. Zheng, B.N. Popov and R.E. White, J. Electrochem. Soc. 143 (1996) 834.Google Scholar
  9. 9.
    H. Ura, T. Nishina and I. Uchida, J. Electroanal. Chem. 396 (1995) 169.Google Scholar
  10. 10.
    C. Iwakura, T. Oura, H. Inoue, M. Matsuoka and Y. Yamamota, J. Electroanal. Chem. 398 (1995) 37.Google Scholar
  11. 11.
    B.S. Haran, B.N. Popov and R.E. White, J. Power Sources 75 (1998) 56.Google Scholar
  12. 12.
    P.J. Schneider, in J.F. Lee and A.B. Cambel (Eds.), 'Conduction Heat Transfer' (Addison-Wesley, Cambridge. 1955), p. 246.Google Scholar
  13. 13.
    G. Zheng, B.N. Popov and R.E. White, J. Electrochem. Soc. 142 (1995) 2695.Google Scholar
  14. 14.
    T.B. Hunter, P.S. Tyler, W.H. Smyrl and H.S. White, J. Electrochem. Soc. 134 (1987) 2198.Google Scholar
  15. 15.
    L.M. Gassa, J.R. Vilche, M. Ebert, K. Juttner and W.J. Lorenz, J. Appl. Electrochem. 20 (1990) 677.Google Scholar
  16. 16.
    T. Pajkossy and L. Nyikos, Electrochimica Acta 34 (1989) 171.Google Scholar
  17. 17.
    B. Sapoval, Solid State Ionics 23 (1987) 253.Google Scholar
  18. 18.
    S. Motupally, C.C. Streina and J.W. Weidner J. Electrochem. Soc. 142 (1995) 1401.Google Scholar
  19. 19.
    P. Yu, B.N. Popov, J.A. Ritter and R.E. White, J. Electrochem. Soc. 146 (1999) 8.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • X. Yuan
    • 1
  • N. Xu
    • 1
  1. 1.Shanghai Institute of MetallurgyChinese Academy of SciencesShanghaiChina

Personalised recommendations