Journal of Applied Electrochemistry

, Volume 31, Issue 9, pp 997–1007 | Cite as

Anodic behaviour of carbon materials in NaCl saturated NaAlCl4 fused electrolyte at low temperatures: A cyclic voltammetric study

  • K.S. Mohandas
  • N. Sanil
  • M. Noel
  • P. Rodriguez


The anodic behaviour of compacted graphite, graphite powder, glassy carbon and reticulated vitreous carbon electrodes in basic sodium chloroaluminate melt in the temperature range 428–573 K was studied using cyclic voltammetry. Chlorine evolution (> + 2.1 V vs Al) alone was the predominant reaction on the compact glassy carbon and fresh RVC electrodes. On compacted graphite, chlorine-assisted chloroaluminate intercalation was found to be a competitive process to the chlorine evolution. At high sweep rates, intercalation/deintercalation near the graphite lattice edges occur faster than chlorine evolution. Subsequent intercalation, however, is a slow process. Chlorine evolution predominates at higher temperatures and at higher anodic potentials. On graphite powders, a more reversible free radical chlorine adsorption/desorption process also occurs in the potential region below chlorine evolution. The process occurs at the grain boundaries, edges and defects of the graphite powder material. Intercalation/deintercalation processes are mainly responsible for the disintegration of graphitic materials in low-temperature chloroaluminate melts. Repeated intercalation/deintercalation cycles result in the irreversible transformation of the electrode surface and electrode characteristics. The surface area of the electrode is increased substantially on cycling. Electrode materials and operating conditions suitable for chlorine generation, intercalation/deintercalation and chlorine adsorption/desorption and power sources based on these processes are identified in this work.

adsorption/desorption chlorine chloroaluminate electrolysis graphite intercalation/deintercalation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    British Patent, 1 200 103 (1967).Google Scholar
  2. 2.
    Yashuhiko Ito and Shiro Yoshizawa, Some new molten salt electrolytic processes, in G. Mamantov and J. Braunstein (Eds), 'Advances in Molten Salt Chemistry', (Plenum, New York, 1981), p.391.Google Scholar
  3. 3.
    K.S. Mohandas, N. Sanil and P. Rodriguez, Proceedings of the National Symposium on Electrochemistry in Nuclear Technology (Kalpakkam, 1998), pp. 163–168.Google Scholar
  4. 4.
    H. Wendt, A. Khalil and C.E. Padberg, J. Appl. Electrochem. 21 (1991) 929.Google Scholar
  5. 5.
    G.L. Holleck, J. Electrochem. Soc. 119 (1972) 1158.Google Scholar
  6. 6.
    A.J. Bard, 'Encyclopedia of Electrochemistry of the Elements' (Marcel Dekker, Inc., New York, 1976) vol. X, p. 263.Google Scholar
  7. 7.
    H. Wendt, S. Dermeik and A. Ziogas, Werkst Korros. 41 (1990) 457–463.Google Scholar
  8. 8.
    K.S. Mohandas, PhD thesis, University of Madras, January (2001).Google Scholar
  9. 9.
    S. Maximovitch, M. Levart, M. Fouletier, N. Nguyen and G. Bronoel, J. Power Sources 3 (1978) 215–225.Google Scholar
  10. 10.
    K.S. Mohandas, N. Sanil, Tom Mathews and P. Rodriguez, Metall. Mater. Trans. B, in press.Google Scholar
  11. 11.
    W. Rudorff, in 'Advances in Inorganic Chemistry and Radiochemistry' vol. 1, (1959), p. 254.Google Scholar
  12. 12.
    W. Rudorff and A. Landel, Z. Anorg. Allg. Chem. 293 (1958) 327.Google Scholar
  13. 13.
    M.L. Dzurus and G.R. Henning, J. Amer. Chem. Soc. 79 (1957) 1051.Google Scholar
  14. 14.
    B. Bach and A.R. Ubbelhode, Proc. R. Soc. Lond. A 325 (1971) 437.Google Scholar
  15. 15.
    J.G. Hooley, Carbon 11 (1973) 225.Google Scholar
  16. 16.
    R.C. Croft, J. Appl. Chem. (Lond.) 2 (1952) 557.Google Scholar
  17. 17.
    J.G. Hooley and P.T. Hough, Carbon 16 (1978) 221.Google Scholar
  18. 18.
    Baikar, E. Habegger, V.K. Sharma and W. Richard, Carbon 19 (1981) 329.Google Scholar
  19. 19.
    Baikar, E. Habegger and R. Schlogl, Ber. Bunsenges. Phys. Chem. 89 (1985) 530.Google Scholar
  20. 20.
    M. Fouletier and M. Armand, Carbon 17 (1979) 427.Google Scholar
  21. 21.
    J.G. Hooley, Carbon 18 (1980) 83.Google Scholar
  22. 22.
    E. Stumpp, Mater. Sci. Eng. 31 (1977) 53.Google Scholar
  23. 23.
    D.K. Gosser, Jr, 'Cyclic Voltammetry — Simulation and Analysis of Reaction Mechanisms' (VCH, New York, 1996), p. 43.Google Scholar
  24. 24.
    H. Thiele, Z. Electrochem. 40 (1934) 26.Google Scholar
  25. 25.
    K. Kinoshita, 'Carbon: Electrochemical and Physiochemical Properties' (J. Wiley & Sons, New York, 1988).Google Scholar
  26. 26.
    J.J. Werth, US Patent 3 847 667 (1974).Google Scholar
  27. 27.
    P. Beck, H. Junge and H. Krohn, Electrochim. Acta 26 (1981) 799.Google Scholar
  28. 28.
    L.J.J. Janssen and J.G. Hoogland, Electrochim. Acta 15 (1970) 941.Google Scholar
  29. 29.
    L.J.J. Janssen, Electrochim. Acta 19 (1974) 257.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • K.S. Mohandas
    • 1
  • N. Sanil
    • 1
  • M. Noel
    • 2
  • P. Rodriguez
    • 1
  1. 1.Materials Chemistry DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations