Advertisement

Journal of Applied Electrochemistry

, Volume 31, Issue 9, pp 987–995 | Cite as

Preparation and characterization of chromium deposits obtained from molten salts using pulsed currents

  • A. Cotarta
  • J. Bouteillon
  • J.C. Poignet
  • F. Vasiliu
  • V. Cotarta
Article

Abstract

The electroplating of chromium from fused chloride electrolytes was investigated. The experimental conditions were defined taking into account the mechanisms of the electrochemical reduction of CrCl2 and of the chromium nucleation and electrocrystallization phenomena. Chromium was plated on various substrates from concentrated LiCl–KCl–CrCl2 (600 to 800 mol m−3 CrCl2) electrolyte. Direct or pulsed current electrolysis were carried out under a dry argon atmosphere in the 400 to 440 °C temperature range. The shape of the current signals was chosen, taking into account the chromium electrocrystallization phenomena onto a foreign substrate, so as to obtain well-defined structures for the chromium layers. The chromium deposits were characterized by SEM and EDX analysis, and by microhardness determination. Uniform chromium electroplates of high purity, high adherence with no cracks, were obtained by using pulsed current: signals with cathodic pulses and open-circuit periods preceded by cathodic pre-pulses. With this current shape, the mean rate of the chromium electroplating process remained lower than 10 μm h−1. However, using a repeated of periodic cathodic pre-pulse/cathodic pulse/anodic pulse/open circuit sequences, the growth rate of compact chromium layers increased to 100 μm h−1 or more.

chromium electroplating fused chloride electrolytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.W. Mellors and S. Senderoff, Canadian Patent 688 546 (1964).Google Scholar
  2. 2.
    S. Senderoff, Metall. Rev. 1 (1966) 97.Google Scholar
  3. 3.
    D. Inman, J.C. Legey and R. Spencer, J. Electroanal. Chem. 61 (1975), 289.Google Scholar
  4. 4.
    S.H. White and U.M. Twardoch, J. Appl. Electrochem. 17 (1987) 225.Google Scholar
  5. 5.
    T. Vargas and D. Inman, J. Appl. Electrochem. 17 (1987) 270.Google Scholar
  6. 6.
    F. Lantelme and E.H. Cherrat, J. Electroanal. Chem. 297 (1991) 409.Google Scholar
  7. 7.
    K. Benslimane, F. Lantelme and M. Chemla, Electrochim. Acta 37 (1992) 1445.Google Scholar
  8. 8.
    F. Lantelme, K. Benslimane and M. Chemla, J. Electroanal. Chem. 337 (1992) 325.Google Scholar
  9. 9.
    A. Cotarta, J. Bouteillon and J.C. Poignet, J. Appl. Electrochem. 27 (1997) 651.Google Scholar
  10. 10.
    A. Cotarta, PhD thesis, INPG, Grenoble, France (1997).Google Scholar
  11. 11.
    K. Benslimane, PhD thesis, Paris VI University, France (1991).Google Scholar
  12. 12.
    F. Lantelme and El. Hamid Cherrad, J. Electroanal. Chem. 297 (1991) 409.Google Scholar
  13. 13.
    S.C. Levy and F.W. Reinhardt, J. Electrochem. Soc. 122(2) (1995) 200.Google Scholar
  14. 14.
    H. Rouault-Rogez, J. Bouteillon and J.C. Poignet, J. Appl. Electrochem. 25 (1995) 166.Google Scholar
  15. 15.
    H.A. Laitinen, Y. Yamamura and I. Uchida, J. Electrochem. Soc. 125(9) (1978) 1450.Google Scholar
  16. 16.
    P. Morriset, J.W. Oswald, C.R. Draper and R. Pinner, 'Chromium Plating' (Robert Draper, Teddington, Middlesex, UK, 1954).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • A. Cotarta
    • 1
  • J. Bouteillon
    • 2
  • J.C. Poignet
    • 2
  • F. Vasiliu
    • 3
  • V. Cotarta
    • 1
  1. 1.Laboratoire d'Electrochimie Assistée par OrdinateurUniversité Polytechnique de BucarestBucarestRomania
  2. 2.Laboratoire d'Electrochimie et de Physico-Chimie des Matériaux et des Interfaces, UMR 5631, INPG–CNRS associée a l'UJF, ENSEEGDomaine UniversitaireSt. Martin d'HèresFrance
  3. 3.MetagalaxyBucarestRomania

Personalised recommendations