Journal of Materials Science

, Volume 36, Issue 17, pp 4201–4207 | Cite as

Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment

  • T. Ihara
  • M. Miyoshi
  • M. Ando
  • S. Sugihara
  • Y. Iriyama


In order to realize a visible (vis)-light-active TiO2 photocatalyst, reduction treatment using low-temperature hydrogen plasma with elevated temperatures was applied on anatase TiO2 powder of ST-01 without causing a phase transition to rutile. According to plasma-heat treatment, oxygen was evacuated from ST-01 particles and the colored ST-01, ivory to beige, was obtained. XPS results showed non-stoichiometric, expressed as TiO2−x} and x was increased with the increase of treating time. Plasma-heat treated ST-01 showed new ESR signal at g = 2.003 assigned to electrons trapped at the oxygen-defect site. This signal was strengthened when vis-light illumination was applied. Results of vis-light activity tests, evaluated by photocatalytic oxidation of benzoic acid in liquid phase and 2-propanol in gas phase using vis-light illumination (>406 nm), showed excellent activity while low ST-01 showed almost no activity on both tests.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. E. Ollis, “Photocatalytic Purification and Treatment ofWater and Air” (Elsevier Sci. Pub., New York, 1993).Google Scholar
  2. 2.
    H. Tang, K. Prasad, R. Sanjines, P. E. Schmidt and F. Levy, J.Appl.Phys. 75 (1994) 2042.Google Scholar
  3. 3.
    K. Tennakone, C. T. K. Tilakaratne and I. R. M. Kottegoda, Wat.Res. 31 (1997) 1909.Google Scholar
  4. 4.
    M. R. Hoffmann, S. T Martin, W. Choi and D. W. Bahnemann, Chem.Rev. 95 (1995) 69.Google Scholar
  5. 5.
    A. Fujishima, K. Hashimoto and T. Watanabe, “TiO2 Photocatalysis: Fundamentals and Applications” (BKC, Tokyo, 1999).Google Scholar
  6. 6.
    I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto and A. Fujishima, J.Photochem. Photobiol.A: Chem 98 (1996) 79.Google Scholar
  7. 7.
    E. C. Akubuiro and X. E. Verykios, J.Phys.Chem. Solids 50 (1989) 17.Google Scholar
  8. 8.
    J. Solia, J. C. Conesa, V. Augugliaro, M. Schiarello and A. Sclafani, J.Phys.Chem. 95 (1991) 27.Google Scholar
  9. 9.
    W. Choi, A. Termin and M. R. Hoffmann, ibid. 98 (1994) 13669.Google Scholar
  10. 10.
    M. A. Fox and M. T. Dulay, Chem.Rev. 93 (1993) 341.Google Scholar
  11. 11.
    P. Kofstad, J.Less-Common Metals 13 (1967) 635.Google Scholar
  12. 12.
    J. Gautron, P. Lemasson and J. Marucco, Faraday Discuss.Chem.Soc. 70 (1981) 81.Google Scholar
  13. 13.
    P. Salvador, M. L. G. Gonzalez and F. Munoz, J.Phys.Chem. 96 (1992) 10349.Google Scholar
  14. 14.
    J. D. Brown, D. L. Williamson and A. J. Nozik, ibid. 89 (1985) 3076.Google Scholar
  15. 15.
    S. Ito, T. Ihara, Y. Miura and M. Kiboku, in Proceeding of Proc. Fourth Annual Int. Conf. of Plasma Chem. and Technol., San Diego, U.S.A., November 1987, edited by H. V. Boenig (Technomic, Lancaster, 1989) p. 151.Google Scholar
  16. 16.
    I. Izumi, F. F. Fan and A. J. Bard, J.Phys.Chem. 85 (1981) 218.Google Scholar
  17. 17.
    R. W. Matthews, J.Chem.Soc., Faraday Trans. 80(1) (1984) 457.Google Scholar
  18. 18.
    H. Harada and T. Ueda, Chem.Phys.Lett. 106 (1984) 229.Google Scholar
  19. 19.
    K. Schindler and M. Kunst, J.Phys.Chem. 94 (1990) 8222.Google Scholar
  20. 20.
    S. J. Teichner, and M. Formenti, “Fundamentals and Developments of Photocatalytic and Photoelectrochemical Processes,” Vol. 146, edited by M. Schiavello, NATO ASI Series, Series C (Reidel, Dordrecht, 1985) p. 457.Google Scholar
  21. 21.
    Y. Ohko, A. Fujishima and K. Hashimoto, J.Phys. Chem.B 102 (1998) 1724.Google Scholar
  22. 22.
    K. Takeuchi, I. Nakamura, O. Matsumoto, S. Sugihara, M. Ando and T. Ihara, Chemistry Letters (2000) 1354.Google Scholar
  23. 23.
    P. F. Cornaz, J. H. C. Van Hoof, F. J. Pluijim and G. C. A. Schuit, Disc.Faraday Soc. 41 (1966) 290.Google Scholar
  24. 24.
    A. M. Volodin, A. E. Cherkashin and V. S. Zakharenko, React.Kinet.Catal.Lett. 11 (1979) 103.Google Scholar
  25. 25.
    D. C. Cronemeyer, Phys.Rev. 113 (1959) 1222.Google Scholar
  26. 26.
    S. Sazonova, T. P. Khokhlova, G. M. Sushentseva and N. P. Keier, Kinet.Katiliz 3 (1962) 655.Google Scholar
  27. 27.
    I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K. Takeuchi, J.Mol.Catal.A: Chemical 161 (2000) 205.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • T. Ihara
    • 1
  • M. Miyoshi
    • 1
  • M. Ando
    • 2
  • S. Sugihara
    • 2
  • Y. Iriyama
    • 3
  1. 1.Department of Chemistry and Environmental TechnologyKinki UniversityHigashi-HiroshimaJapan
  2. 2.Ecodevice Co. Ltd.Sumida-ku, TokyoJapan
  3. 3.Division of Interdisciplinary SciencesYamanashi UniversityKofuJapan

Personalised recommendations