Advertisement

Journal of Applied Electrochemistry

, Volume 31, Issue 6, pp 685–692 | Cite as

Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions

  • G. Trejo
  • H. Ruiz
  • R. Ortega Borges
  • Y. Meas
Article

Abstract

The influence of several ethoxylated additives (ethyleneglycol and polyethyleneglycol polymers of different molecular weights) on the nucleation, growth mechanism and morphology of zinc electrodeposited from an acidic chloride bath is reported. The electrochemical study was carried out using cyclic voltammetry, inversion potential and chronoamperometric techniques. The dimensionless graphs model was applied to analyse the nucleation process and the results showed that the studied additives have a blocking effect on the electrodeposition of zinc. This effect occurs in the first stages of the nucleation process and is dependent on the molecular weight of the additive. Changes induced by the presence of additives in the morphology and grain size of the deposits were observed using SEM analysis. Results show that the presence of additives modifies the nucleation process and determines the final properties of the deposits.

additives electrocrystallization electrodeposition zinc alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.H. Safranek (Ed.), ‘The Properties of Electrodeposited Metals and Alloys’ (AESF, Florida, 1986).Google Scholar
  2. 2.
    J.W. Dini, ‘Electrodeposition. The Material Science of Coatings and Substrates’ (Noyes Publications, New Jersey, 1995).Google Scholar
  3. 3.
    D.A. Vermilyea, J. Electrochem. Soc. 106 (1995) 66.Google Scholar
  4. 4.
    Majid R. Kalantary, Plat. Surf. Finish. 80 (June 1994) 80.Google Scholar
  5. 5.
    D. Stoychev and S. Rashkov, Commun. Dep. Chem. Bulg. Acad. Sci. 9(4) (1976) 618.Google Scholar
  6. 6.
    A. Aragón, M.G. Figueroa and R.E. Gana, J. Appl. Electrochem. 22 (1992) 558.Google Scholar
  7. 7.
    D. Stoychev, I. Vitanova, T. Vitanov and S. Rashkov, Surf. Technol. 7 (1978) 427.Google Scholar
  8. 8.
    M. Wünsche, R.J. Nichols, R. Schumacher. W. Beckman and H. Meyer, Electrochim. Acta 38 (1993) 647.Google Scholar
  9. 9.
    M. Pushpavanam and K. Balakrishnam, J. Appl. Electrochem. 26 (1996) 283.Google Scholar
  10. 10.
    C. Karwas and T. Hepel, J. Electrochem. Soc. 136 (1989) 1672.Google Scholar
  11. 11.
    R. Fratesi, G. Roventi, G. Giuliani and C.R. Tomachuk, J. Appl. Electrochem. 27 (1997) 1088.Google Scholar
  12. 12.
    H. Ruiz, G. Trejo, R. Ortega Borges and Y. Meas V., Memorias XIII Congreso de la Sociedad Iberoamericana de Electroquímica (1998) 580.Google Scholar
  13. 13.
    A. Rojas and I. González, Anal. Chim. Acta 187 (1986) 279.Google Scholar
  14. 14.
    A. Rojas-Hernández, M.T. Ramírez and I. González, Anal. Chim. Acta 278 (1993) 321.Google Scholar
  15. 15.
    A. Rojas-Hernández, M.T. Ramírez and I. González, Anal. Chim. Acta 278 (1993) 335.Google Scholar
  16. 16.
    M. Smith and A.E. Martell, ‘Critical Stability Constants’, Vol. 4 (Plenum Press, New York, 1979).Google Scholar
  17. 17.
    G. Trejo, R. Ortega Borges, Y. Meas V., E. Chainet, B. Nguyen and P. Ozil, J. Electrochem. Soc. 14 (1998) 4090.Google Scholar
  18. 18.
    A.J. Bard and L.R. Faulkner, ‘Electrochemical Methods: Fundamental and Applications’ (J. Wiley & Sons, New York, 1980).Google Scholar
  19. 19.
    G.J. Hills, D.J. Hills, D.J. Schiffrin and J. Thompson, Electrochim. Acta 19 (1974) 657.Google Scholar
  20. 20.
    S. Fletcher, Electrochim. Acta 28 (1983) 917.Google Scholar
  21. 21.
    S. Fletcher, C.S. Halliday, D. Gates, M. Westcott, T. Lwin and G. Nelson, J. Electroanal. Chem. 159 (1983) 267.Google Scholar
  22. 22.
    B.R. Scharifker and G. Hills, Electrochim. Acta 28 (1983) 879.Google Scholar
  23. 23.
    G. Gunawardena, G. Hills and I. Montenegro, J. Electroanal. Chem. 184 (1985) 371.Google Scholar
  24. 24.
    G. Gunawardena, G. Hills, I. Montenegro and B. Scharifcker, J. Electroanal. Chem. 138 (1982) 225.Google Scholar
  25. 25.
    B.R. Scharifker and J. Mostany, J. Electroanal. Chem. 177 (1984) 13.Google Scholar
  26. 26.
    P.M. Rigano, C. Mayer and T. Chierchie, J. Electroanal. Chem. 248 (1988) 219.Google Scholar
  27. 27.
    M. Palomar-Pardave, I. González, A.B. Soto and E.M. Arce, J. Electroanal. Chem. 443 (1998) 125.Google Scholar
  28. 28.
    M. Sánchez Cruz, F. Alonso and J.M. Palacios, J. Appl. Electrochem. 23 (1993) 364.Google Scholar
  29. 29.
    G. Trejo, A.F. Gil and I. González, J. Electrochem. Soc. 142 (1995) 3404.Google Scholar
  30. 30.
    G. Barceló, M. Sarret, C. Müller and J. Pregonas, Electrochim. Acta 43 (1998) 13.Google Scholar
  31. 31.
    H. Yan, J. Downes, P.J. Boden and S.J. Harris, J. Electrochem. Soc. 143 (1996) 1577.Google Scholar
  32. 32.
    E. Michailova, I. Vitanova, D. Stoychev and A. Mielchev, Electrochim. Acta 38 (1993) 2455.Google Scholar
  33. 33.
    E. Michailova, I. Vitanova, D. Stoychev and A. Mielchev, J. Electroanal. Chem. 366 (1994) 195.Google Scholar
  34. 34.
    P.C. Fazio, E.L. Gutman, S.L. Kauffman, J.G. Kramer, C.M. Leinweber, V.A. Mayer, P.A. McGee (Eds), ASTM G5. Standard reference test for making potentiostatic and potentiodynamic anodic polarization measurementes, in ‘Annual Book of ASTM Standards, Vol. 03.02 Wear and Erosion, Metal Corrosion’ (ASTM, Philadelphia, 1993), p. 71.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • G. Trejo
    • 1
  • H. Ruiz
    • 1
  • R. Ortega Borges
    • 1
  • Y. Meas
    • 1
  1. 1.Parque Tecnológico Querétaro – SanfandilaCentro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ)Pedro Escobedo, QuerétaroMexico

Personalised recommendations