Skip to main content
Log in

Investigation of Ternary Catalysts for Methanol Electrooxidation

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of methanol was investigated on Pt–Ru–X ternary metallic catalysts (with X=Au, Co, Cu, Fe, Mo, Ni, Sn or W). The catalysts were prepared by electrochemical deposition and dispersed in a conductive three-dimensional matrix, an electronic conducting polymer, polyaniline (PAni). A comparative study of the behaviour of several ternary catalysts towards the electro-oxidation of methanol shows that PAni/Pt–Ru–Mo is the most efficient anode at potentials up to 500mV vs RHE. This latter ternary electrocatalyst leads to current densities up to 10 times higher than those measured with PAni/Pt–Ru in this potential range. Moreover, the catalyst appears to be stable for potentials lower than 550mV vs RHE. According to EDX analysis, the good behaviour of the Pt–Ru–Mo ternary catalyst seems to result from the presence of a small amount of the third metal, at an atomic ratio close to 5%. This set of encouraging results has also been confirmed by preliminary measurements in a single cell direct methanol fuel cell (DMFC) containing a home made PAni/Pt–Ru–Mo anode. The ternary catalyst leads to higher power densities than the PAni/Pt–Ru binary catalyst under the same experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Wasmus and A. Küver, J. Electroanal. Chem. 461 (1999) 14.

    Google Scholar 

  2. C. Lamy and J-M. Léger, Advanced electrode materials for the direct methanol fuel cell, in A. Wieckowski (Ed), `Interfacial Electrochemistry, Theory, Experiments and Applications’, Marcel Dekker, New York, (1999), pp. 885–894.

    Google Scholar 

  3. X. Ren, P. Zelenay, S. Thomas, J. Davey and S. Gottesfeld, J. Power Sources 86 (2000) 111.

    Google Scholar 

  4. K.-A. Adamson and P. Pearson, J. Power Sources 86 (2000) 548.

    Google Scholar 

  5. B.D. McNicol, D.A.J. Rand and K.R. Williams, J. Power Sources 83 (1999) 15.

    Google Scholar 

  6. D. Hart, M.A. Leach, R. Fouquet, P.J. Pearson and A. Bauen, J. Power Sources 86 (2000) 542.

    Google Scholar 

  7. F. Kiso and N. Arashi, Applied Energy 59 (1998) 215.

    Google Scholar 

  8. A. Küver and W. Vielstich, J. Power Sources 74 (1998) 211.

    Google Scholar 

  9. A. Heinzel and V.M. Barragán, J. Power Sources 84 (1999) 70–74.

    Google Scholar 

  10. K. Scott, W.M. Taama, P. Argyropoulos and K. Sundmacher, J. Power Sources 83 (1999) 204.

    Google Scholar 

  11. B. Beden, C. Lamy, A. Bewick and K. Kunimatsu, J. Electroanal. Chem. 121 (1981) 343.

    Google Scholar 

  12. A. Hamnett, Catalysis Today 38 (1997) 445.

    Google Scholar 

  13. A. Hamnett, in A. Wieckowski (Ed), Mechanism of Methanol Electrooxidation in ’Interfacial Electrochemistry, Theory, Experiments and Applications’, Marcel Dekker, New York, (1999), pp. 843–883.

    Google Scholar 

  14. G.T. Burnstein, C.J. Barnett, A.R. Kucernak and K.R. Williams, Catalysis Today 38 (1997) 425.

    Google Scholar 

  15. M.M.P. Janssen and J. Moolhuysen, Electrochim. Acta 21 (1976) 869.

    Google Scholar 

  16. J. Wang, H. Nakajima and H. Kita, J. Electroanal. Chem. 250 (1988) 213.

    Google Scholar 

  17. A. Hamnett, B.J. Kennedy and S.A. Weeks, J. Electroanal. Chem. 240 (1988), 349.

    Google Scholar 

  18. H. Nakajima and H. Kita, Electrochim. Acta 35 (1990) 849.

    Google Scholar 

  19. K. Wang, H.A. Gasteiger, M.N. Markovic and P.N. Ross, Jr., Electrochim. Acta 41 (1996) 2587.

    Google Scholar 

  20. M. Götz and H. Wendt, Electrochim. Acta 43 (1998) 3637.

    Google Scholar 

  21. M. Watanabe, H. Igarashi and T. Fujino, Abstracts of the 192th meeting of the Electrochemical Society and 48th annual ISE meeting, Paris (1997) no. 1083.

  22. S. Mukerjee, S.J. Lee, E.A. Ticianelli and J. McBreen, Abstracts of the 194th meeting of the Electrochemical Society, Boston (1998) no. 1087.

  23. M. Götz and H. Wendt, Abstracts of the 194th meeting of the Electrochemical Society, Boston (1998) no. 1095.

  24. B.N. Grgur, N.M. Markovic and P.N. Ross, Jr., Abstracts of the 194th meeting of the Electrochemical Society, Boston (1998) no. 1097.

  25. T. Zawodzinski, J. Bauman, S. Savett, F. Uribe and S. Gottesfeld, Abstracts of the 194th meeting of the Electrochemical Society, Boston (1998) no. 1100.

  26. S. Mukerjee, S.J. Lee, E.A. Ticianelli, J. McBreen, B.N. Grgur, N.M. Markovic, P.N. Ross, J.R. Giallombardo and E.S. De Castro, Electrochem. Solid-State Lett. 2 (1999) 12.

    Google Scholar 

  27. K. Lasch, L. Jörissen and J. Garche, J. Power Sources 84 (1999) 225–230.

    Google Scholar 

  28. C.T. Hable and M.S. Wrighton, Langmuir 7 (1991) 1305.

    Google Scholar 

  29. C. Lamy, J-M. Léger and F. Garnier, Electrocatalytic properties of conductive polymers in H.S. Nalwa (Ed.), ’Organic Conductive Molecules and Polymers’, Vol. 3 Wiley, Chichester, UK, (1997), p. 471.

    Google Scholar 

  30. S. Swathirajan and Y.M. Mikhail, J. Electrochem. Soc. 139 (1992) 2105.

    Google Scholar 

  31. M. Hepel, J. Electrochem. Soc. 145 (1998) 124.

    Google Scholar 

  32. K.H. Xue, C.X. Cai, H. Yang, Y.M. Zhou, S.G. Sun, S.T. Chen and G. Xu, J. Power Sources 75 (1998) 207.

    Google Scholar 

  33. H. Yang, T. Lu, K. Xue, S. Sun, G. Lu and S. Chen, J. Electrochem. Soc. 144 (1997) 2302.

    Google Scholar 

  34. H. Laborde, J-M. Léger and C. Lamy, J. Appl. Electrochem. 24 (1994) 219.

    Google Scholar 

  35. H. Laborde, J-M. Léger and C. Lamy, J. Appl. Electrochem. 24 (1994) 1019.

    Google Scholar 

  36. W.T. Napporn, H. Laborde, J-M. Léger and C. Lamy, J. Electroanal. Chem. 404 (1996) 153.

    Google Scholar 

  37. W.T. Napporn, J-M. Léger and C. Lamy, J. Electroanal. Chem. 408 (1996) 141.

    Google Scholar 

  38. A.B. Anderson, E. Grantscharova and S. Seong, J. Electrochem. Soc. 143 (1996) 2075.

    Google Scholar 

  39. A.B. Anderson and E. Grantscharova, J. Phys. Chem. 99 (1995) 9143.

    Google Scholar 

  40. P. Shiller and A.B. Anderson, Surf. Sci. 236 (1990) 225.

    Google Scholar 

  41. M. Pourbaix, ’Atlas d’Equilibres Electrochimiques’, Gaultier Villars, Paris, (1963), p. 272.

    Google Scholar 

  42. A. Hamelin, Double-layer properties at sp and sd metal single-crystal electrodes, in B.E. Conway, R.E. White and J.O’M Bockris (Eds), ’Modern Aspects of Electrochemistry’, Vol. 16 (Plenum, New York, 1985), pp. 1–102.

    Google Scholar 

  43. B. Beden, C. Lamy and J-M. Léger, in B.E. Conway, R.E. White and J.O’M Bockris (Eds), ’Modern Aspects of Electrochemistry’, Vol. 22 Plenum, New York, (1992), p. 97.

    Google Scholar 

  44. J.A. Shropshire, J. Electrochem. Soc. 112 (1965) 465.

    Google Scholar 

  45. H. Kita, H. Nakajima and K. Shimazu, J. Electroanal. Chem. 248 (1988) 181.

    Google Scholar 

  46. A. Lima, F. Hahn, J-M. Léger and C. Lamy, in preparation. 386

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, A., Coutanceau, C., LÉger, JM. et al. Investigation of Ternary Catalysts for Methanol Electrooxidation. Journal of Applied Electrochemistry 31, 379–386 (2001). https://doi.org/10.1023/A:1017578918569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017578918569

Navigation