Journal of Applied Electrochemistry

, Volume 31, Issue 6, pp 677–683 | Cite as

Electrochemical characterization of Ni–P and Ni–Co–P amorphous alloy deposits obtained by electrodeposition

  • M.M.V. Parente
  • O.R. Mattos
  • S.L. Díaz
  • P. Lima Neto
  • F.J. Fabri Miranda


Ni–P and Ni–Co–P amorphous alloy deposits were obtained by electrodeposition at 80 °C on carbon steel substrates. The influence of the electrolyte Co2+ concentration and of applied current density was investigated. The corrosion behaviour of amorphous and crystalline deposits was evaluated by polarization curves and electrochemical impedance spectroscopy in NaCl 0.1 M solution at room temperature. Impedances were measured for samples under total immersion (free potential against time) and for polarized samples in predefined regions of the polarization curves. It was found that the alloy deposit composition is highly affected by the composition of the electrolyte but displays no significant dependence on applied current density. The results showed that the presence of Co on Ni–P amorphous alloys improves the deposit performance in the studied corrosive medium. It was also verified that the amorphous structure provides higher corrosion resistance to both Ni–P and Ni–Co–P alloys.

alloy electrodeposition amorphous alloys impedance Ni–Co–P alloy Ni–P alloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.L. Carbajal and R.E. White, J. Electrochem. Soc. 135 (1988) 2952.Google Scholar
  2. 2.
    A. Królikowski and P. Butkiewicz, Electrochim. Acta 38 (1993) 1979.Google Scholar
  3. 3.
    P. Lima Neto, F.J.B. Rabelo, A.M.M. Adam, E.R. Gonzalez and L.A. Avaca, Química Nova 19 (1996) 345.Google Scholar
  4. 4.
    A. Budniok and P. Matyja, Thin Solid Films 201 (1991) 305.Google Scholar
  5. 5.
    T. Morikawa, T. Nakade, M. Yokoi, Y. Fukumoto and C. Iwakura, Electrochim. Acta 42 (1997) 115.Google Scholar
  6. 6.
    E. Bredael, B. Blanpain, J.P. Celis and J.R. Roos, J. Electrochem. Soc. 141 (1994) 294.Google Scholar
  7. 7.
    A.S.M.A. Haseeb, P. Chakraborty, I. Ahmed, F. Caccavale and R. Bertoncello, Thin Solid Films 283 (1996) 140.Google Scholar
  8. 8.
    J. Crousier, Z. Hanane and J.-P. Crousier, Thin Solid Films 248 (1994) 51.Google Scholar
  9. 9.
    P.-H. Lo, W.-T. Tsai, J.-T. Lee and M.-P. Hung, Surf. Coat. Technol. 67 (1994) 27.Google Scholar
  10. 10.
    N. Fenineche, A.M. Chaze and C. Coddet, Surf. Coat. Technol. 88 (1997) 264.Google Scholar
  11. 11.
    J. Bielinski, A. Królikowski, I. Kedzierska and W. Stokarski, ACH-Models in Chem. 132 (1995) 685.Google Scholar
  12. 12.
    H. Habazaki, S.-Q. Ding, A. Kawashima, K. Asami, K. Hashimoto, A. Inoue and T. Masumoto, Corros. Sci. 29 (1989) 1319.Google Scholar
  13. 13.
    S.J. Splinter, R. Rofagha, N.S. McIntyre and U. Erb, Surf. Interf. Anal. 24 (1996) 181.Google Scholar
  14. 14.
    R.B. Diegle, N.R. Sorensen, C.R. Clayton, M.A. Helfand and Y.C. Yu, J. Electrochem. Soc. 135 (1988) 1085.Google Scholar
  15. 15.
    M.A. Helfand, C.R. Clayton, R.B. Diegle, N.R. Sorensen and Y.C. Yu, J. Electrochem. Soc. 139 (1992) 2121.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • M.M.V. Parente
    • 1
    • 2
  • O.R. Mattos
    • 1
  • S.L. Díaz
    • 1
  • P. Lima Neto
    • 2
  • F.J. Fabri Miranda
    • 3
  1. 1.Laboratório de Corrosão Prof. Manoel de Castro, EE/PEMM/COPPEUniversidade Federal do Rio de JaneiroRio de Janeiro, RJBrazil
  2. 2.Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do CearáCEBrazil
  3. 3.Centro de Pesquisa e Desenvolvimento da USIMINASIpatinga, MGBrazil

Personalised recommendations