Skip to main content
Log in

Mass transport characterization of a novel gas sparged photoelectrochemical reactor

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The photoelectrochemical treatment of waste water using immobilised TiO2 electrodes has been demonstrated to be an attractive alternative to TiO2 slurry reactors; however, it is generally believed that the diffusion of species to the surface of the catalyst imposes severe mass transfer limitations and hence is a disadvantage of the photoelectrochemical approach. To challenge this view, this paper reports the characterization of the mass transport properties of a novel gas sparged photoelectrochemical reactor. It is shown that passing a constant stream of nitrogen gas through the reactor increased the mass transfer coefficient by an order of magnitude above that in the absence of gas and this was attributed to the turbulent flow regime imposed by rising gas bubbles. It is also demonstrated that the gas–liquid transfer coefficient was greater than that for the rate of liquid diffusion and this has important implications for heterogeneous processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Mills and S. Le Hunte, Applied Cat. A 175 (1998) 221.

    Google Scholar 

  2. P.A. Christensen and G.M. Walker, ‘Opportunities for the UK in Solar Detoxification’, ETSU s/P4/00249/REP (1996).

  3. P.A. Christensen, T.A. Egerton, J.C. Harper and J.R. Tinlin, ‘Topical Issues in Glasses’, Vol. 3, Photons Glasses and Coatings (1991).

  4. K.E. Shaw, P.A. Christensen and A. Hamnett, Electrochim. Acta 45 (1996) 719.

    Google Scholar 

  5. S.A. Walker, P.A. Christensen, K.E. Shaw and G.M. Walker, J. Electroanal. Chem. 393 (1995) 137.

    Google Scholar 

  6. K. Vinodgopal, S. Hotchandani and P.V. Kamat, J. Phys. Chem. 97 (1993) 9040.

    Google Scholar 

  7. K. Vinodgopal, U. Stafford, K.A. Gray and P.V. Kamat, J. Phys. Chem. 98 (1994) 6797.

    Google Scholar 

  8. W.D. Deckwer, ‘Bubble Column Reactors’ (Wiley, New York, 1992), and references therein.

    Google Scholar 

  9. L.J.J. Jansen and J.G. Hoogland, Electrochim. Acta 18 (1973) 543.

    Google Scholar 

  10. L.J.J. Jansen and E. Barendrecht, Electrochim. Acta 24 (1979) 693.

    Google Scholar 

  11. G.H. Sedahmed and L.W. Shemilt, J. Appl. Elec. 14 (1984) 123.

    Google Scholar 

  12. H. Vogt, J. Appl. Elec. 19 (1989) 713.

    Google Scholar 

  13. J.M. Bisang, J. Appl. Elec. 22 (1992) 585.

    Google Scholar 

  14. J.M. Bisang, J. Appl. Elec. 23 (1993) 966.

    Google Scholar 

  15. M.G. Fouad and G.H. Sedahmed, Electrochim. Acta 17 (1972) 665.

    Google Scholar 

  16. N. Ibl, Chemie. Ing. Tech. 39 (1967) 914.

    Google Scholar 

  17. N. Ibl, M.E. Adam, J. Venczel and E. Schalch, Chemie. Ing. Tech. 43 (1971) 202.

    Google Scholar 

  18. J. Kulas, I. Rousar, J. Krysa and J. Jirkovsky, J. Appl. Electrochem. 28 (1998) 843.

    Google Scholar 

  19. A.I. Vogel, ‘Textbook of Inorganic Quantatative Analysis’ (Longman, London, 1978).

    Google Scholar 

  20. C.J. King and T.A. Egerton, J. Oil Col. Chem. Assoc. 62 (1979) 386.

    Google Scholar 

  21. H.O. Finklea, ‘Semiconductor Electrodes’ (Elsevier, Amsterdam, 1988), 55, Chapter 2.

    Google Scholar 

  22. F. Goodridge and K. Scott, ‘Electrochemical Process Engineering’ (Plenum, New York, 1995).

    Google Scholar 

  23. L. Lipp and D. Pletcher, Electrochim. Acta 42 (1997) 1101.

    Google Scholar 

  24. T.K. Ross and A.A. Wragg, Electrochim. Acta 10 (1965) 1093.

    Google Scholar 

  25. K. Akita and F. Yoshida, Ind. Eng. Chem. Proc. Des. Dev. 13 (1974) 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, J., Christensen, P., Egerton, T. et al. Mass transport characterization of a novel gas sparged photoelectrochemical reactor. Journal of Applied Electrochemistry 31, 267–273 (2001). https://doi.org/10.1023/A:1017555314100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017555314100

Navigation