Skip to main content
Log in

Hydroxyproline-rich glycoproteins expressed during stress responses in cassava

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The storage roots of cassava (Manihot esculenta Crantz) suffer from a rapid post-harvest deterioration that is a major constraint to their increased exploitation. In many ways this deterioration resembles wound responses in other better studied plant systems, though it appears to lack an adequate wound repair response. A cDNA clone (cMeHRGP1) for a hydroxyproline-rich glycoprotein expressed during the deterioration response was isolated and characterised. This clone proved to be an antisense pairing, coding for part of phosphoserine aminotransferase on its complementary strand. Messenger RNA corresponding to cMeHRGP1 accumulated in deteriorating cassava roots from day three after harvest, by which time the deterioration response was well advanced. There by confirming that aspects of the wound repair response were inadequate in harvested cassava roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller & D.J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Anonymous, 1994. Cassava biotechnology research priorities 1995. Cassava Biotechn Newsl 2: 15–16.

    Google Scholar 

  • Beeching, J.R., A.D. Dodge, K.G. Moore, H.M. Phillips & J.E. Wenham, 1994. Physiological deterioration in cassava: possibilities for control. Trop Sci 34: 335–343.

    Google Scholar 

  • Beeching, J.R., A.D. Dodge, K.G. Moore & J.E. Wenham 1995. Physiological Deterioration in Cassava: An Incomplete Wound Response? In: A.-M. Thro & W. Roca (Eds.), The Cassava Biotechnology Network: Proc Second Int Sci Meet, pp. 729–736. CIAT, Cali, Colombia.

    Google Scholar 

  • Beeching, J.R., Y. Han & R.M. Cooper, 1997. Physiological deterioration in cassava: towards a molecular understanding. Afric J Root Tuber Crops 2: 99–105.

    Google Scholar 

  • Beeching, J.R., Y. Han, R. Gómez-Vásquez, R.C. Day & R.M. Cooper, 1998. Wound and defense responses in cassava as related to post-harvest physiological deterioration. Recent Adv Phytochem 32: 231–248.

    CAS  Google Scholar 

  • Beeching, J.R., H. Li, Y. Han, H. Buschmann, R. Cooper, R. Gómez-Vásquez, K. Reilly, M.X. Rodriguez & J. Tohme, 2000. Phenylalanine Ammonia-Lyase Gene Structure and Activity in Cassava. In: L.J.C.B. Carvalho, A.M. Thro & A.D. Vilarinhos (Eds.), Cassava Biotechnology. IVth Intl Sci Meet Cassava Biotech Netw, pp. 551–559. Brasilia: Embrapa.

    Google Scholar 

  • Bennett, R.N. & R.M. Wallsgrove, 1994. Secondary metabolites in plant defense-mechanisms. New Phytol 127: 617–633.

    Article  CAS  Google Scholar 

  • Bonnelye, E. & V. Laudet, 1994. Overlapping genes. Med Sci 10: 805–816.

    Google Scholar 

  • Booth, R.H., 1976. Storage of fresh cassava (Manihot esculenta). I. Post-harvest deterioration and its control. Exp Agric 12: 103–111.

    Article  Google Scholar 

  • Bowles, D.J., 1990. Defense-related proteins in higher plants. Annu Rev Biochem 59: 873–907.

    Article  PubMed  CAS  Google Scholar 

  • Bown, D.P., G.P. Bolwell & J.A. Gatehouse, 1993. Characterization of potato (Solanum tuberosum L.) extensins - a novel extensinlike cDNA from dormant tubers. Gene 134: 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D.J., P. Kjellbom & C.J. Lamb, 1992. Elicitor-induced and wound-induced oxidative cross-linking of a proline-rich plantcell wall protein - a novel, rapid defense response. Cell 70: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Brownleader, M.D., P.E. McNally, G.E.A. Davies, M. Trevan & P.M. Dey, 1997. Elicitor-induced extensin insolubilization in suspension-cultured tomato cells. Phytochem 46: 1–9.

    Article  CAS  Google Scholar 

  • Buschmann, H., M.X. Rodriguez, J. Tohme & J.R. Beeching, 2000. Qualitative and quantitative changes of phenolic components of cassava (Manihot esculenta Crantz). In: L.J.C.B. Carvalho, A.M. Thro & A.D. Vilarinhos (Eds.), Cassava Biotechnology. IVth Intl Sci Meet Cassava Biotechn Netw, pp. 517–525. Brasilia: Embrapa.

    Google Scholar 

  • Cebrat, S., P. Mackiewicz & M.R. Dudek, 1998. The role of the genetic code in generating new coding sequences inside existing genes. Biosystems 45: 165–176.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S., J. Puryear & J. Cairney, 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molec Biol Rep 11: 113–116.

    CAS  Google Scholar 

  • Chen, J. & J.E. Varner, 1985. An extracellular matrix protein in plants: Characterisation of a genomic clone for carrot extensin. EMBO J 4: 2145–2151.

    PubMed  CAS  Google Scholar 

  • CIAT, 1992. Cassava Programme 1987–1991. Working Document 116. CIAT, Cali, Colombia.

    Google Scholar 

  • Cock, J.H., 1985. Cassava: New Potential for a Neglected Crop. Westfield Press, Boulder.

    Google Scholar 

  • Corbin, D.R., N. Sauer & C.J. Lamb, 1987. Differential regultion of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants. Molec Cellular Biol 7: 4337–4344.

    CAS  Google Scholar 

  • Czyhrinciw, N. & W. Jaffé, 1951. Modificaciones quimicas durante la conservacion de raices y tuberculos. Archiv Venez Nutric 2: 49–67.

    CAS  Google Scholar 

  • Dellaporta, S.L., J. Wood & J.B. Hicks, 1983. A plant DNA minipreparation: Version II. Plant Molec Bio Rep 1: 19–21.

    Article  CAS  Google Scholar 

  • Dixon, R.A. & N.L. Paiva, 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097.

    Article  PubMed  CAS  Google Scholar 

  • Ecker, J.R. & R.W. Davis, 1987. Plant defence genes are regulated by ethylene. PNAS 84: 5202–5206.

    Article  PubMed  CAS  Google Scholar 

  • Hahlbrock, K. & D. Scheel, 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40: 347–369.

    Article  CAS  Google Scholar 

  • Han, H., H. Li, R.M. Cooper & J.R. Beeching, 2000. Isolation of post-harvest physiological deterioration related cDNA clones from cassava. In: L.J.C.B. Carvalho, A.M. Thro & A.D. Vilarinhos (Eds.), Cassava Biotechnology. IVth Intl Sci Meet Cassava Biotechn Netw, pp. 526–536. Brasilia: Embrapa.

    Google Scholar 

  • Hirose, S., 1986. Physiological studies on postharvest deterioration of cassava plants. Jap Agric Res Quart 19: 241–252.

    Google Scholar 

  • Hirose, S., E.S. Data & M.A. Quevedo, 1984. Changes in respiration and ethylene production in cassava roots in relation to postharvest deterioration. In: I. Uritani & E.D. Reyes (Eds.), Tropical Root Crops: Postharvest Physiology and Processing, pp. 83–98. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Hirsinger, C., Y. Parmentier, A. Durr, J. Fleck & E. Jamet, 1997. Characterization of a tobacco extensin gene and regulation of its gene family in healthy plants and under various stress conditions. Plant Molec Biol 33: 279–289.

    Article  CAS  Google Scholar 

  • Janssen, W. & C. Wheatley, 1985. Urban cassava markets - the impact of fresh root storage. Food Policy 10: 265–277.

    Article  Google Scholar 

  • Joshi, C.P., H. Zhou, X. Huang & V.L. Chiang, 1997. Context sequences of translation initiation codon in plants. Plant Molec Biol 35: 993–1001.

    Article  CAS  Google Scholar 

  • Kawalleck, P., E. Schmelzer, K. Hahlbrock & I.E. Somssich, 1995. Two pathogen-responsive genes in parsley encode a tyrosinerich hydroxyproline-rich glycoprotein (HRGP) and an anionic peroxidase. Molec Gen Genet 247: 444–452.

    Article  PubMed  CAS  Google Scholar 

  • Kieliszewski, M.J. & D.T.A. Lamport, 1994. Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J 5: 157–172.

    Article  PubMed  CAS  Google Scholar 

  • Kimelman, D. & M.W. Kirschner, 1989. An antisense messenger RNA directs the covalent modification of the transcript encoding fibroblast growth-factor in Xenopus oocytes. Cell 59: 687–696.

    Article  PubMed  CAS  Google Scholar 

  • Knee, R. & P.R. Murphy, 1997. Regulation of gene expression by natural antisense RNA transcripts. Neurochem Internat 31: 379–392.

    Article  CAS  Google Scholar 

  • Lalaguna, F. & M. Agudo, 1989. Relationship between changes in lipid with ageing of cassava roots and senescence parameters. Phytochem 28: 2059–2062.

    Article  CAS  Google Scholar 

  • LeJohn, H.B., L.E. Cameron, B. Yang & S.L. Rennie, 1994. Molecular characterization of an NAD-specific glutamatedehydrogenase gene inducible by L-glutamate - antisense gene pair arrangement with L-glutamate-inducible heat-shock 70-like protein gene. J Biol Chem 269: 4523–4531.

    PubMed  CAS  Google Scholar 

  • Li, H., Y. Han & J.R. Beeching, 2000. Isolation and characterisation of an ACC oxidase gene from cassava. In: L.J.C.B. Carvalho, A.M. Thro & A.D. Vilarinhos (Eds.), Cassava Biotechnology. IVth Intl Sci Meet Cassava Biotechn Netw, pp. 582–589. Brasilia: Embrapa.

    Google Scholar 

  • Lindsey, J.S., 1991. Self-assembly in synthetic routes to molecular devices - biological principles and chemical perspectives - a review. New J Chem 15: 153–180.

    CAS  Google Scholar 

  • Mann, C., 1997. Reseeding the green revolution. Science 277: 1038–1043.

    Article  CAS  Google Scholar 

  • Murashige, T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.

    Article  CAS  Google Scholar 

  • Olsen, K.M. & B.A. Schaal, 1999. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Procl Nat Acad Sci USA 96: 5586–5591.

    Article  CAS  Google Scholar 

  • Piperno, D.P. & I. Holst, 1998. The presence of starch grains on prehistoric stone tools from the humid neotropics: Indications of early tuber use and agriculture in Panama. J Archaeol Sci 25: 765–776.

    Article  Google Scholar 

  • Plumbley, R.A., P.A. Hughes & J. Marriot, 1981. Studies on peroxidases and vascular discoloration in cassava root tissues. J Sci Food Agric 32: 723–731.

    CAS  Google Scholar 

  • Reilly, K., Y. Han, J. Tohme & J.R. Beeching, 2000. Oxidative stress related genes in cassava post-harvest physiological deterioration. In: L.J.C.B. Carvalho, A.M. Thro & A.D. Vilarinhos (Eds.), Cassava Biotechnology. IVth Intl Sci Meet Cassava Biotechn Netw, pp. 560–571. Brasilia: Embrapa.

    Google Scholar 

  • Rickard, J.E. & D.G. Coursey, 1981. Cassava storage. Part 1: Storage of fresh cassava roots. Trop Sci 23: 1–32.

    Google Scholar 

  • Rickard, J.E. & P.B. Gahan, 1983. The development of occlusions in cassava (Manihot esculenta Crantz) root xylem vessels. Ann Bot 52: 811–821.

    Google Scholar 

  • Rodriguez, M.X., H. Buschmann, J. Tohme & J.R. Beeching, 2000. Production of anti-microbial compounds in cassava (Manihot esculenta Crantz) root during post-harvest physiological deterioration. In: L.J.C.B. Carvalho, A.M. Thro & A.D. Vilarinhos (Eds.), Cassava Biotechnology. IVth Intl Sci Meet Cassava Biotechn Netw, pp. 320–328. Brasilia: Embrapa.

    Google Scholar 

  • Sakai, T. & Y. Nakagawa, 1988. Diterpenic stress metabolites from cassava roots. Phytochem 27: 3769–3779.

    Article  CAS  Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor.

    Google Scholar 

  • Schumacher, H.M., H. Gundlach, F. Fiedlar & M.H. Genk, 1987. Elicitation of benzophenanthridine alkaloid synthesis in Escholtzia cell cultures. Plant Cell Rep 6: 410–413.

    CAS  Google Scholar 

  • Showalter, A.M., A.D. Butt & S. Kim, 1992. Molecular details of tomato extensin and glycine-rich protein gene-expression. Plant Molec Biol 19: 205–215.

    Article  CAS  Google Scholar 

  • Silke, J., 1997. The majority of long non-stop reading frames on the antisense strand can be explained by biased codon usage. Gene 194: 143–155.

    Article  PubMed  CAS  Google Scholar 

  • Sommer-Knudsen, J., A. Bacic & A.E. Clarke, 1998. Hydroxyproline-rich plant glycoproteins. Phytochem 47: 483–497.

    Article  CAS  Google Scholar 

  • Tanaka, Y., E.S. Data, S. Hirose, T. Taniguchi & I. Uritani, 1983. Biochemical changes in secondary metabolites in wounded and deteriorated cassava roots. Agric Biol Chem 47: 693–700.

    CAS  Google Scholar 

  • Tierney, M.L., J. Wiechert & D. Pluymers, 1988. Analysis of the expression of extensin and p33-related cell-wall proteins in carrot and soybean. Molec Gen Genet 211: 393–399.

    Article  CAS  Google Scholar 

  • Uritani, I., E.S. Data & Y. Tanaka, 1984. Biochemistry of postharvest deterioration of cassava and sweet potato roots. In: I. Uritani & E.D. Reyes (Eds.), Tropical Root Crops: Postharvest Physiology and Processing, pp. 61–75. JSSP: Tokyo.

    Google Scholar 

  • Wenham, J.E., 1995. Post-harvest Deterioration of Cassava. A Biotechnological Perspective. FAO, Rome.

    Google Scholar 

  • Wheatley, C. & G. Gomez, 1985. Evaluation of some quality characteristics in cassava storage roots. Qual Plant Foods Hum Nutr 35: 121–129.

    Article  Google Scholar 

  • Wheatley, C.C. & W.W. Schwabe, 1985. Scopoletin involvement in post-harvest physiological deterioration of cassava root (Manihot esculenta Crantz). J Exp Bot 36: 783–791.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Gómez-Vásquez, R., Reilly, K. et al. Hydroxyproline-rich glycoproteins expressed during stress responses in cassava. Euphytica 120, 59–70 (2001). https://doi.org/10.1023/A:1017547419332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017547419332

Navigation