Journal of Applied Electrochemistry

, Volume 31, Issue 5, pp 537–546 | Cite as

Corrosion of Mild Steel in low Conductive Media simulating Natural Waters

  • M. Sfaira
  • A. Srhiri
  • H. TakenoutiEmail author
  • M. Marie de Ficquelmont-Loïzos
  • A. Ben Bachir
  • M. Khalakhil


The corrosion of a mild steel was examined in two aerated neutral aqueous solutions, defined as reference solution (0.2 g L−1NaCl) and as Σ-solution (1.3 g L−1NaCl + 0.63 g L−1NaHCO3 + 0.27 g L−1Na2SO4). Their composition was chosen on the basis of the physical and chemical properties of certain natural waters. The solutions simulated the least (reference solution) and the most (Σ-solution) aggressive waters of the Sebou river in Morocco, as determined after a four-year examination (1991–94), at 13 pump stations located along the river. Various experimental methods were used to determine the corrosion mechanism. Cathodic range voltammetry using a rotating disc allowed the kinetics of oxygen reduction process to be determined. Since the conductivity of the solutions were low, the potential was corrected for ohmic drop estimated through the high frequency limit in the Nyquist diagrams (electrochemical impedance spectroscopy) as well as the current interrupter method. After correction, the polarization curves revealed a diffusion plateau attributed to dissolved oxygen reduction. At the plateau, a two-step mechanism was derived involving oxygen diffusion through the hydrodynamic layer and through a porous inner layer formed by the corrosion products. This inner layer could not be observed by SEM, but both EIS and EHD (electrohydrodynamic impedance) confirmed the presence of a thin porous dielectric layer. At the open circuit potential, the corrosion rate was determined by the diffusion rate of dissolved oxygen in the Σ-solution, and by charge transfer in the reference solution. This shows that the corrosion mechanism strongly depends on the electrolyte and its conductivity.

diffusion process EIS electrohydrodynamic impedance irrigation waters low conductive media 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bousselmi, C. Fiaud, B. Tribollet and E. Triki, Electrochim. Acta 44 (1999) 4357.Google Scholar
  2. 2.
    M. Duprat, M.C. Lafont, F. Dabosi and F. Moran, Electrochim. Acta 30 (1985) 353.Google Scholar
  3. 3.
    J. Newman, J. Electrochem. Soc. 113 (1966) 501.Google Scholar
  4. 4.
    F. Mansfeld, M.W. Kending and S. Tsai, Corros. Sci. 22 (1982) 455; Extended Abstracts of 161st Meeting of Electrochemical Society, Detroit (1982), p. 1138.Google Scholar
  5. 5.
    J.D.E. Mclntyre and W.F. Peck, J. Electrochem. Soc. 117 (1970) 747.Google Scholar
  6. 6.
    K. Schwabe, W. Oclssner and Kh.D. Suschke, Prot. Metals 15 (1979) 126.Google Scholar
  7. 7.
    T. Agladze, L. Dobos, H. Suschke, V. Makarov, L. Meszaros and W. Elsner, Prot. Metals 15 (1979) 213.Google Scholar
  8. 8.
    W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vettering, 'Numerical recipes' (Cambridge University Press, 1987).Google Scholar
  9. 9.
    C. Deslouis and B. Tribollet, Flow modulation techniques in electrochemistry, in C. Tobias and H. Gerischer (Eds), 'Advances in Electrochemical Science and Engineering', Vol. 2, (VCH, Weinheim/New York, 1991), p. 205.Google Scholar
  10. 10.
    C. Deslouis, B. Tribollet, M. Duprat and F. Moran, J. Electrochem. Soc. 134 (1987) 2496.Google Scholar
  11. 11.
    M. Sfaira, Thesis, 'Contribution à l'étude de la corrosion des conduits d'eaux d'irrigation dans la zone du Gharb au Maroc', Ibn Tofaïl University, Kenitra, Morocco (1996).Google Scholar
  12. 12.
    V.G. Levich, 'Physicochemical Hydrodynamics', (Prentice-Hall, Englewood Cliffs, NJ, 1962).Google Scholar
  13. 13.
    A. Ambari, C. Deslouis and B. Tribollet, Int. J. Heat Mass Transf. 29 (1986) 35.Google Scholar
  14. 14.
    M. Sfaira, A. Srhiri, M. Keddam and H. Takenouti, Electrochim, Acta 44 (1999) 4395.Google Scholar
  15. 15.
    C. Deslouis, C. Gabrielli and B. Tribollet, J. Eectrochem. Soc. 130 (1983) 2044.Google Scholar
  16. 16.
    M Marie de Ficquelmont-Loïzos, H. Takenouti and W. Kanté, J. Electroanal. Chem. 428 (1997) 129.Google Scholar
  17. 17.
    I. Epelboin, M. Keddam and H. Takenouti, J. Appl. Electrochem. 2 (1972) 71.Google Scholar
  18. 18.
    M. Duprat, Thèse d'État, 'Approche des mécanismes de la corrosion d'un acier au carbone en solution de NaCl 3% et de son inhibition au moyen de molécules organiques, intérêt de l'utilisation des méthodes électrochimiques stationnaires et transitoire'. INP de Toulouse (1981).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • M. Sfaira
    • 1
  • A. Srhiri
    • 1
  • H. Takenouti
    • 2
    Email author
  • M. Marie de Ficquelmont-Loïzos
    • 3
  • A. Ben Bachir
    • 1
  • M. Khalakhil
    • 4
  1. 1.Laboratoire d'Electrochimie et des Etudes de Corrosion, Faculté des SciencesUniversité Ibn TofailKenitraMorocco
  2. 2.Université Abdel Malek EssaädiTangerMorocco
  3. 3.Laboratoire de Biorhéologie et Hydrodynamique PhysicochimiqueUniversité Denis DiderotParis Cedex 05France
  4. 4.ORMVAGKenitraMorocco

Personalised recommendations