Skip to main content
Log in

Influence of benthic and interstitial processes on nutrient changes along a regulated reach of a large river (Rhône River, France)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Benthic and hyporheic (i.e. the water-saturated interstitial zone beneath river bed-sediments) processes together modify particulate and dissolved nutrient fluxes in streams, but the relative importance of these processes remains unstudied in large rivers. Changes in material and nutrient fluxes (total suspended matter, biodegradable and refractory dissolved organic carbon, and nitrate) were monitored along a reach with a regulated discharge (a by-passed section downstream of a dam). Mass balance diagrams highlight a contrasting functioning between upstream and downstream parts of this sector of the Rhône River (Pierre-Bénite sector, France). At the upstream location close to the water input, characterized by partially clogged sediments and large lentic zones, decrease in total suspended matter (TSM) and biodegradable dissolved organic carbon (BDOC) fluxes resulted from high rates of benthic processes (i.e. sedimentation, respiration and mineralisation). At the downstream location, characterized by strong vertical water exchanges in a large riffle, nutrient changes resulted from the combination of processes that took place at the surface of the stream bed and during water percolation through riffle sediments. Physical benthic processes (scouring of periphyton, erosion and resuspension of sediment due to higher surface velocity) lead to an increase of TSM and DOC fluxes. Within the riffle, decomposition and mineralisation of organic matter in the first meter of the infiltration zone, and physical entrapment of RDOC, make the riffle as a sink for DOC and a source of nitrate. The significant contribution of the riffle to the self-purification capacities of this large river reach shows the relevance of including interstitial compartment in self-purification studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, M. A., C. N. Dahm & H. M. Valett, 1999. Acetate metabolism in the hyporheic zone of a mountain stream. Limnol. Oceanogr. 44: 1530–1539.

    Google Scholar 

  • Battin, T., 1999. Hydrologic flow paths control dissolved organic carbon fluxes and metabolism in an alpine stream hyporheic zone. Wat. Res. Res. 35: 3159–3169.

    Google Scholar 

  • Bencala, K. E., V. C. Kennedy, G. W. Zellweger, A. P. Jackman & R. J. Avanzino, 1984a. Interactions of solutes and streambed sediment 1. An experimental analysis of cation and anion transport in a mountain stream. Wat. Res. Res. 20: 1797–1803.

    Google Scholar 

  • Bencala, K. E., V. C. Kennedy, G. W. Zellweger, A. P. Jackman & R. J. Avanzino, 1984b. Interactions of solutes and streambed sediment 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport. Wat. Res. Res. 20: 1804–1814.

    Google Scholar 

  • Bencala, K. E., J. H. Duff, J. W. Harvey, A. P. Jackman & F. J. Triska, 1993. Modelling within the stream-catchment continuum. In Jakeman A. J., M. B. Beck & M. J. McAleer (eds), Modelling Change in Environmental Systems. Springer, New York: 313 pp.

    Google Scholar 

  • Biggs, B. J. F. & M. E. Close, 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flow and nutrients. Freshwat. Biol. 22: 209–231

    Google Scholar 

  • Blenkinsopp, S. A., P. A. Gabott, C. Freeman & M. A. Lock, 1991. Seasonal trends in river biofilm storage products and electron transport system activity. Freshwat. Biol. 26: 21–34.

    Google Scholar 

  • Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Ann. Rev. Ecol. Syst. 29: 59–81.

    Google Scholar 

  • Brunke, M. & T. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwat. Biol. 37: 1–33.

    Google Scholar 

  • Cattaneo, A. & M.-C. Amireault, 1992. How artificial are artificial substrata for periphyton? J. n. am. Benthol. Soc. 11: 244–256.

    Google Scholar 

  • CEMAGREF, 1995. Suivi de l'incidence de l'augmentation du débit réservé dans le Vieux Rhône de Pierre Bénite. Unpublished report: 115 p.

  • Chróst, R. J., 1991. Microbial enzymes in aquatic environments. In Overbeck J. & R. J. Chròst (eds), Aquatic Microbial Ecology. Springer, New York: 313 pp.

    Google Scholar 

  • Claret, C., P. Marmonier, J.-M. Boissier, D. Fontvieille & P. Blanc, 1997. Nutrient transfer between parafluvial interstitial water and river water, influence of gravel bar heterogeneity. Freshwat. Biol. 37: 657–670.

    Google Scholar 

  • Claret, C., P. Marmonier & J.-P. Bravard, 1998. Seasonal dynamics of nutrients and biofilms in interstitial habitats in two contrasted riffles in a regulated large river. Aquat. Sci. 60: 33–55.

    Google Scholar 

  • Elwood, J. W., J. D. Newbold, R. W. O'Neil & W. Van Winkle, 1983. Resource spiralling: an optimal paradigm for analyzing lotic ecosystems. In Fontaine, T. D. (ed.), Dynamics of Lotic Ecosystems. Ann Arbor Science, U.S.A.: 494 pp.

    Google Scholar 

  • Fiebig, D. M., 1995. Groundwater discharge and its contribution of dissolved organic carbon to an upland stream. Arch. Hydrobiol. 134: 129–155.

    Google Scholar 

  • Findlay, S., 1995. Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnol. Oceanogr. 40: 159–164.

    Google Scholar 

  • Fontvieille, D. & B. Cazelles, 1990. Modelisation of a lotic ecosystem polluted by a pigsywaste: dynamics of dissolved carbon and benthic microorganisms. Rev. Sci. Eau 2: 511–541.

    Google Scholar 

  • Fisher, S. G., N. B. Grimm, E. Marti & R. Gomez, 1998. Hierarchy, spatial configuration and nutrient cycling in a desert stream. Aust. J. Ecol. 23: 41–52.

    Google Scholar 

  • Freeman, C., M. C. Lock, J. Marxsen & S. Jones, 1990. Inhibitory effects of high molecular weight dissolved organic matter upon metabolic processes in biofilms from contrasting rivers and streams. Freshwat. Biol. 24: 159–166.

    Google Scholar 

  • Freeze, D. R. & J. A. Cherry, 1979. Groundwater. Prentice-Hall, Englewood Cliffs, New-Jersey: 604 pp.

    Google Scholar 

  • Harvey, J. W. & K. E. Bencala, 1993. The effect of streambed topography on surface-subsurface water exchange in mountain catchments. Wat. Res. Res. 29: 89–98.

    Google Scholar 

  • Hendricks, S. P., 1996. Bacterial biomass, activity and production within the hyporheic zone of a north-temperate stream. Arch. Hydrobiol. 13: 467–487.

    Google Scholar 

  • Hill, A. R. & D. J. Lymburner, 1998. Hyporheic zone and streamsubsurface exchange in groundwater-fed stream. Can. J. Fish. aquat. Sci. 55: 495–506. 131

    Google Scholar 

  • Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll A determination: improvements in methodology. Oikos, 30: 438–447.

    Google Scholar 

  • Horner, R. R., E. B. Welch, M. R. Seeley & J. L. M. Jacoby, 1990. Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwat. Biol. 24: 215–232.

    Google Scholar 

  • Jones, J. B. & R. M. Holmes, 1996. Surface-subsurface interactions in stream ecosystems. Trends Ecol. Evol. 11: 239–242.

    Google Scholar 

  • Kellerhals, R. & D. I. Bray, 1971. Sampling procedures for coarse fluvial sediments. J. Hydraul. Div. ASCE. 97(Hy8): 1165–1180.

    Google Scholar 

  • Klotz, R. L. & E. A. Matson, 1978. Dissolved organic carbon fluxes in the Shetucket River of eastern Connecticut, USA. Freshwat. Biol. 8: 347–355.

    Google Scholar 

  • Lau,,Y. L. & D. Liu, 1993. Effect of flow rate on biofilm accumulation in open channels. Wat. Res. 3: 335–360.

    Google Scholar 

  • Mann, C. J. & R. G Wetzel, 1995. Dissolved organic carbon and its utilization in a riverine wetland ecosystem. Biogeochemistry 31: 99–120.

    Google Scholar 

  • Marmonier, P., D. Fontvieille, J. Gibert & V. Vanek, 1995. Distribution of dissolved organic carbon and bacteria at the interface between the Rhône river and its alluvial aquifer. J. n. amer. Benthol. Soc. 14: 382–392.

    Google Scholar 

  • Morrice, J. A., H. M. Valett, C.N. Dahm & M. E. Campana, 1997. Alluvial characteristics, groundwater-surface water exchange and hydrologic retention in headwater streams. Hydrol. Process. 11: 253–267.

    Google Scholar 

  • Newbold, J. D., P. J. Mulholland, J. W. Elwood & R. V. O'Neil, 1982. Organic carbon spiralling in stream ecosystems. Oikos 38: 266–272.

    Google Scholar 

  • Osttroumov, S. A., 1998. Biological filtering and ecological machinery for self-purification and bioremediation in aquatic ecosystems: towards a holistic view. Riv. Biol. Biol. Forum 91: 221–232.

    Google Scholar 

  • Pringle, C. M. & F. J. Triska, 1991. Effect of geothermal groundwater on nutrient dynamics of a lowland Costa Rican stream. Ecology 72: 951–965.

    Google Scholar 

  • Servais, P., G. Billen & M.-C. Hascoët, 1987. Determination of the biodegradable dissolved organic matter in waters. Wat. Res. 21: 445–450.

    Google Scholar 

  • Servais, P., A. Anzil & C. Ventresque, 1989. Simple method for determination of biodegradable organic carbon in water. Appl. Env. Microbiol. 55: 2732–2734.

    Google Scholar 

  • Spellman, F. R., 1996 Stream Ecology and Self-purification. An Introduction for Wastewater and Water Specialists. Technomic Publishing Co. Lancaster, Pennsylvania, U.S.A.: 133 pp.

    Google Scholar 

  • Stream SoluteWorkshop, 1990. Concepts and methods for assessing solute dynamics in stream ecosystems. J. n. am. Benthol. Soc. 9: 95–119.

    Google Scholar 

  • Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989. Retention and transport of nutrients in a thirdorder stream in northwestern California: hyporheic processes. Ecology 70: 1893–1905.

    Google Scholar 

  • Triska, F. J., J. C. Duff & R. J. Avanzino, 1990. Influence of exchanges flow between the channel and hyporheic zone on nitrate production in a small mountain stream. Can. J. Fish. aqut. Sc. 47: 2099–2111.

    Google Scholar 

  • Valett, H. M., S. G. Fisher & E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. J. n. am. Benthol. Soc. 9: 201–215.

    Google Scholar 

  • Valett, H. M., J. A. Morrice, C. N. Dahm & M. E. Campana, 1996. Parent lithology, surface-groundwater exchange and nitrate retention in headwater streams. Limnol. Oceanogr. 41: 333–345.

    Google Scholar 

  • Vanek, V., 1987. The interaction between lake and groundwater and their ecological significance. Stygologia 3: 1–23.

    Google Scholar 

  • Vervier, P., J. Gibert, P. Marmonier & M.-J. Dole-Olivier, 1992. A perspective on the permeability of the surface freshwatergroundwater ecotone. J. n. am. Benthol. Soc. 11: 93–102.

    Google Scholar 

  • Wuhrmann, K., 1972. Stream purification. In Mitchell, R. (ed.), Water Pollution Microbiology. Wiley Interscience, New-York: 119–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fauvet, G., Claret, C. & Marmonier, P. Influence of benthic and interstitial processes on nutrient changes along a regulated reach of a large river (Rhône River, France). Hydrobiologia 445, 121–131 (2001). https://doi.org/10.1023/A:1017540306550

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017540306550

Navigation