Skip to main content
Log in

Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, U.S.A.) kettle ponds

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arts, G. H. P. & R. S. E.W. Leuven, 1988. Floristic changes in shallow soft waters in relation to underlying environmental factors. Freshwat. Biol. 20: 97–111.

    Google Scholar 

  • Canter, L. W. & R. C. Knox, 1985. Septic Tank System Effects on Groundwater Quality. Lewis Publ., Chelsea, Michigan: 336 pp.

    Google Scholar 

  • Crum, H. A. & L. E. Anderson, 1981. Mosses of Eastern North America. Columbia University Press, New York: 576 pp.

    Google Scholar 

  • Culliton, T. A., M. A. Warren, T. R. Goodspeed, D. G. Remer, C. M. Blackwell & J. J. McDonough, III, 1990. 50 Years of Population Change Along the Nation's Coasts, 1960–2010. National Oceanic and Atmospheric Administration, National Ocean Service, Rockville, Maryland: 41 pp.

    Google Scholar 

  • Downing, J. A. & E. McCauley, 1992. The nitrogen:phosphorus relationships in lakes. Limnol. Oceanogr. 37: 936–945.

    Google Scholar 

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetric approach. Ecol. Monogr. 67: 345–366.

    Google Scholar 

  • Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton in the freshwaters of North America: a review and critique of experimental enrichments. Can. J. Fish. aquat. Sci. 47: 1468–1477.

    Google Scholar 

  • Eriksson, F., E. Hornstrom, P. Mossberg & P. Nyberg, 1983. Ecological effects of lime treatment of acidified lakes and rivers in Sweden. Hydrobiologia 101: 145–164.

    Google Scholar 

  • Farmer, A. M, 1988. Biomass, tissue nutrient and heavy metal content of deep-water mosses from two ponds in the Cape Cod National Seashore, U.S.A. Lindbergia 14: 133–137.

    Google Scholar 

  • Gacia, E., E. Ballesteros, L. Camarero, O. Delgado, A. Palau, J. L. Riera & J. Catalan, 1994. Macrophytes from lakes in the eastern Pyrenees: community composition and ordination in relation to environmental factors. Freshwat. Biol. 32: 73–81.

    Google Scholar 

  • Gee, G.W. & G. J.W. Bauder, 1986. Particle size analysis. In Klute, A. (ed.), Methods of Soils Analysis, Part 1: Physical and Mineralogical Methods. 2nd edn. O. 9 in the Series Agronomy. Amer. Soc. of Agron., Inc. and Soil Soc. of Am., Inc., Madison (WI): 383–411.

    Google Scholar 

  • Gleason, H. A. & A. Cronquist, 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada, Second Edition. The New York Botanical Garden, Bronx, New York: 910 pp.

    Google Scholar 

  • Godfrey, P. J., K. Galluzzo, N. Price & J. Portnoy, 1999. Water Resources Management Plan, Cape Cod National Seashore. Technical report, Cape Cod National Seashore, Department of the Interior, Wellfleet, Massachusetts: 252 pp.

    Google Scholar 

  • Grahn, O., 1977. Macrophyte succession in Swedish lakes caused by deposition of air-borne acid substances. Wat. Air Soil Pollut. 7: 295–305.

    Google Scholar 

  • Hultberg, H. & I. B. Andersson, 1982. Liming of acidified lakes induced long-term changes. Wat. Air Soil Pollut. 18: 311–331.

    Google Scholar 

  • Hutchinson, G. H, 1975. A Treatise on Limnology, Volume 3. J. Wiley & Sons, New York: 660 pp.

    Google Scholar 

  • Jaworski, N. A., R.W. Howarth & L. J. Hetling, 1997. Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the northeast United States. Envir. Sci. Technol. 31: 1995–2004.

    Google Scholar 

  • Keddy, P. A., 1983. Shoreline vegetation in Axe Lake, Ontario: effects of exposure on zonation patterns. Ecology 64: 331–344.

    Google Scholar 

  • Lee, V. & S. Olsen, 1985. Eutrophication and management initiatives for the control of nutrient inputs to Rhode Island coastal lagoons. Estuaries 8: 191–202.

    Google Scholar 

  • Lind, C. T. & G. Cottam, 1969. The submerged aquatics of University Bay: a study of eutrophication. Am. Midl. Nat. 81: 353–369.

    Google Scholar 

  • Martin, L., J. W. Portnoy & C. Roman (eds), 1993. Water Quality Monitoring Plan for Kettle Ponds, Cape Cod National Seashore: Report of a workshop, March 2–3, 1992. Technical Report, NPS/NRWRD/NRTR-93/15, National Park Service, Water Resources Division, Fort Collins, Colorado.

  • Moeller, R. E., 1975. Hydrophyte biomass and community structure in a small, oligotrophic New Hampshire lake. Verh. int. Ver. Limnol. 19: 1004–1012.

    Google Scholar 

  • Oksansen, J. & P. R. Minchin, 1997. Instability of ordination results under changes in input data order: explanations and remedies. J. Veg. Sci. 8:447–454.

    Google Scholar 

  • Oldale, R. N., 1992. Cape Cod and the Islands, the Geologic Story. Parnassus Imprints, East Orleans, MA: 208 pp.

    Google Scholar 

  • Olem, H., 1991. Liming Acidic Surface Waters. Lewis Publishers, Inc., Chelsea, Michigan: 331 pp.

    Google Scholar 

  • Palmer, M. W., 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74: 2215–2230.

    Google Scholar 

  • Portnoy, J. W., B. L. Nowicki, C. T. Roman & D. W. Urish, 1998. The discharge of nitrate-contaminated groundwater from developed shoreline to marsh-fringed estuary. Wat. Resour. Res. 34: 3095–3104.

    Google Scholar 

  • Portnoy, J. W., 1990. Gull contributions of phosphorus and nitrogen to a Cape Cod kettle pond. Hydrobiologia 202: 61–69.

    Google Scholar 

  • Roberts, D. A., R. Singer & C. W. Boylen, 1985. The submersed macrophyte communities of Adirondack lakes (New York, U.S.A.) of varying degrees of acidity. Aquat. Bot. 21: 219–235.

    Google Scholar 

  • Roelofs, J. G. M., 1983. Impact of acidification and eutrophication on macrophyte communities in soft waters in The Netherlands. I. Field observations. Aquat. Bot. 17: 139–155.

    Google Scholar 

  • Roelofs, J. G. M., J. A. A. R. Schuurkes & A. J. M. Smits, 1984. Impact of acidification and eutrophication on macrophyte communities in soft waters. II. Experimental studies. Aquat. Bot. 18: 389–411.

    Google Scholar 

  • Sand-Jensen, K. & M. Søndergaard, 1981. Phytoplankton and epiphyte development and their shading effect on submerged macrophytes in lakes of different nutrient status. Int. Rev. ges. Hydrobiol. 66: 529–552.

    Google Scholar 

  • Schindler, D., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Google Scholar 

  • Schindler, D. W. & E. J. Fee, 1974. Experimental Lakes Area: whole-lake experiments on eutrophication. J. Fish. Res. Bd Can. 31: 937–953.

    Google Scholar 

  • Schneider, R., 1994. The role of hydrologic regime in maintaining rare plant communities of New York's coastal plain pondshores. Biol. Conser. 68: 253–260.

    Google Scholar 

  • Short, F. T. & D. M. Burdick, 1996. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries 19: 730–739.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edn. W. H. Freeman & Company, San Francisco: 887 pp.

    Google Scholar 

  • Sorrie, B. A., 1994. Coastal plain ponds in New England. Biol. Conser. 68: 225–234.

    Google Scholar 

  • Spence, D. H. N., 1967. Factors controlling the distribution of freshwater macrophytes with particular reference to the Lochs of Scotland. J. Ecol. 55: 147–170.

    Google Scholar 

  • Spjøtvoll, E. & M. R. Stoline, 1973. An extension of the T-method of multiple comparison to include the cases with unequal sample sizes. J. Am. Stat. Assoc. 68: 975–978.

    Google Scholar 

  • Srivastava, D. S., C. A. Staicer & B. Freedman, 1995. Aquatic ve-getation of Nova Scotian lakes differing in acidity and trophic status. Aquat. Bot. 51: 181–196.

    Google Scholar 

  • Ter Braak, C. J. F., 1987a. Ordination. In Jongman, R. H. G., C. J. F. Ter Braak & O. F. R. Van Tongeren (eds), Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen, The Netherlands: 91–173.

    Google Scholar 

  • Ter Braak, C. J. F., 1987b. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 64: 69–77.

    Google Scholar 

  • Ter Braak, C. J. F., 1988. CANOCO - a FORTRAN Program for Canonical Community Ordination by [Partial] [Detrended] [Canonical] Correspondence Analysis, Principle Components Analysis and Redundancy Analysis (Version 2.1). Technical report: LWA-88–02, Agricultural Mathematics Group, Wageningen, The Netherlands: 95 pp.

    Google Scholar 

  • Ter Braak, C. J. F., 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57: 255–289.

    Google Scholar 

  • Toivonen, H. & P. Huttunen, 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquat. Bot. 51: 197–221.

    Google Scholar 

  • Valiela, I., J. Costa, K. Foreman, J.M. Teal, B. Howes & D. Aubrey, 1990. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochemistry 10: 177–197.

    Google Scholar 

  • Vallentyne, J. R., 1974. The Algal Bowl: Lakes and Man. Fish. Res. Board Can., Misc. Spec. Publ. 22: 186 pp.

  • Vitousek, P. M., J. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger & G. D. Tilman, 1997. Human alteration of the global nitrogen cycle: causes and consequences. Issues in Ecology 1: 1–16.

    Google Scholar 

  • Weiskel, P. K. & B. L. Howes, 1992. Differential transport of sewage-derived nitrogen and phosphorus through a coastal watershed. Envir. Sci. Technol. 26: 352–360.

    Google Scholar 

  • Winkler, M. J., 1985. A 12 000–year history of vegetation and climate for Cape Cod, Massachusetts. Quart. Res. 23: 301–312.

    Google Scholar 

  • Zellweger Analytics, 1993. Lachat Instruments Quik Chem AE; Automated Ion Analyzer. Methods Manual. Zellweger Analytics, Lachat Instruments Division, Milwaukee, Wisc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roman, C.T., Barrett, N.E. & Portnoy, J.W. Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, U.S.A.) kettle ponds. Hydrobiologia 443, 31–42 (2001). https://doi.org/10.1023/A:1017540002675

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017540002675

Navigation