Advertisement

Journal of Applied Electrochemistry

, Volume 31, Issue 5, pp 579–583 | Cite as

Effect of Pyridine and its Derivatives on the Electrodeposition of Nickel from Aqueous Sulfate solutions Part I: Current Efficiency, Surface Morphology and Crystal Orientation

  • U.S. Mohanty
  • B.C. Tripathy
  • P. Singh
  • S.C. Das
Article

Abstract

The effects of pyridine and its derivatives on current efficiency, surface morphology and crystallographic orientations of electrodeposited nickel from acidic sulfate solutions were investigated. The results indicated that the presence of pyridine and picolines had no significant effect on current efficiency. The deposits obtained were smoother, more compact and uniform with picolines than with pyridine. A significant change in surface morphology of the electrodeposits was observed and picolines were found to be better additives than pyridine, 4-picoline being the best. X-ray diffraction revealed that the (200) plane was the most preferred plane and was not affected by the presence of any of these additives in the electrolyte.

crystal orientation current efficiency deposit morphology electrodeposition nickel picoline pyridine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.R. Thomson, Trans. Am. Electrochem. Soc. 42 (1922) 79.Google Scholar
  2. 2.
    D.T. Ewing, A.A. Brouwer and J.K. Werner, Plating 39 (1952) 1343.Google Scholar
  3. 3.
    J.K. Dennis and J. Fuggles, Trans. Inst. Met. Fin. 46 (1968) 185.Google Scholar
  4. 4.
    A. Geneidy, W.A. Kochler and W. Machu, J. Electrochem. Soc. 106 (1959) 394.Google Scholar
  5. 5.
    D.R. Srivastava and K.S. Nigam, Surf. Technol. 10 (1980) 343.Google Scholar
  6. 6.
    R.K. Dorsch, J. Electroanal. Chem. 21 (1969) 495.Google Scholar
  7. 7.
    G.T. Rogers, M.J. Ware and R.V. Fellows, J. Electrochem. Soc. 107 (1960) 677.Google Scholar
  8. 8.
    S.A. Watson and J. Edwards, Trans. Inst. Met. Finish. 34 (1957) 167.Google Scholar
  9. 9.
    T.A. Costavaras, M. Froment and A.H. Goff, J. Electrochem. Soc. 120 (1973) 867.Google Scholar
  10. 10.
    I. Epelboin, M. Froment and G. Maurin, Plating 53 (1960) 102.Google Scholar
  11. 11.
    N. Kaneko, N. Shinohara, Y. Itoh and H. Nezu, Bunseki Kagaku 40 (1991) 655.Google Scholar
  12. 12.
    Y. Nakamura, N. Kaneko, M. Watanbe and H. Hezu, J. Appl. Electrochem. 24 (1994) 227.Google Scholar
  13. 13.
    A.S. Miluskin, Zashch.Met. 29 (1993) 275.Google Scholar
  14. 14.
    C. Gao, Y. Lu, S. Yue and H. Wang, Trans. Inst. Met. Finish. 77 (1999) 75.Google Scholar
  15. 15.
    R.S. Dubey, S.N. Upadhyay and J.S. Choudhary, J. Electrochem. Soc. (India) 42 (1993) 239.Google Scholar
  16. 16.
    Kirk-Othmer, 'Encyclopedia of Chemical Technology', Vol.7, 'Corrosion and Corrosion Inhibitors' (Wiley-Interscience, New York, 1982), p.135.Google Scholar
  17. 17.
    P.N.S. Yadav and R. Wadhawani, Trans. SAEST 28 (1993) 134.Google Scholar
  18. 18.
    H.C. Brown, Trans. Inst. Met. Finish. 43 (1969) 63.Google Scholar
  19. 19.
    W. Gundel and W. Strauss, US Patent 2876 177 (1959).Google Scholar
  20. 20.
    N. Hackerman and H. Haeshe, J. Electrochem. Soc. 105 (1958) 191.Google Scholar
  21. 21.
    V. Volkova, Nature 185 (1960) 743.Google Scholar
  22. 22.
    T. Shimuzu, T. Ishizuka and N.K. Gijatsa, Ken Kyusho Hokoku 43 (1994) 1724.Google Scholar
  23. 23.
    L.E. Cambi and G. Devoto, Atti Accad Linced 15 (1932) 27.Google Scholar
  24. 24.
    V.D. Grigorev and N.I. Fulman, TSVETNYE Metally/Non-Ferrous Metals 15 (1974) 14.Google Scholar
  25. 25.
    K.N. Srinivasan and S.V.K. Iyer, Bull. Electrochem. 6 (1990) 35.Google Scholar
  26. 26.
    S.C. Das, P. Singh and G.T. Hefter, J. Appl. Electrochem. 26 (1996) 1245.Google Scholar
  27. 27.
    S.C. Das, P. Singh and G.T. Hefter, J. Appl. Electrochem. 27 (1997) 738.Google Scholar
  28. 28.
    B.C. Tripathy, S.C. Das, G.T. Hefter and P. Singh, J. Appl. Electrochem. 27 (1997) 673.Google Scholar
  29. 29.
    G. Aylward and T. Findlay, 'SI Chemical Data', 3rd edn (Jacaranda Wiley, Brisbane, 1994), p.96.Google Scholar
  30. 30.
    V.I. Lakshmanan, D.J. MacKinnon and J.M. Brannen, J. Appl. Electrochem. 7 (1977) 127.Google Scholar
  31. 31.
    B.C. Tripathy, I.N. Bhattacharya, P. Gopalkrishna and S.C. Das, Trans. Indian Inst. Met. 51 (1998) 303.Google Scholar
  32. 32.
    B.C. Tripathy, S.C. Das, G.T. Hefter and P. Singh, J. Appl. Electrochem. 28 (1998) 915.Google Scholar
  33. 33.
    B.C. Tripathy, S.C. Das, P. Singh and G.T. Hefter, J. Appl. Electrochem. 29 (1999) 1229.Google Scholar
  34. 34.
    Z. Alaune, Z. Talaykyte and L.T. Mokshu, Akad. Darb (Sec. B) 31 (1971) 65.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • U.S. Mohanty
    • 1
  • B.C. Tripathy
    • 2
  • P. Singh
    • 2
  • S.C. Das
    • 1
  1. 1.Hydro and Electrometallurgy DivisionRegional Research Laboratory (CSIR)BhubaneswarIndia
  2. 2.Department of ChemistryMurdoch UniversityMurdochAustralia

Personalised recommendations