Skip to main content
Log in

Periphyton nutrient limitation and other potential growth-controlling factors in Lake Okeechobee, U.S.A.

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Periphyton nutrient limitation was assessed in Lake Okeechobee, a large, shallow, eutrophic lake in the southeastern U.S.A. Nutrient assays were performed to determine if the same nutrients that limit phytoplankton also limit periphyton growth in the lake. Nutrient diffusing clay substrates containing agar spiked with nitrogen, phosphorus, or both, along with nutrient-free controls, were incubated at four sites in the lake. Three sites were located in a pelagic–littoral interface (ecotone) and one site was located in the interior littoral region. Incubations lasted for 20–26 days, and were repeated on a quarterly basis between 1996 and 1997, to incorporate seasonal variability into the experimental design. The physical and chemical conditions at each site also were measured. Periphyton biomass (chlorophyll a and ash-free dry mass) was highest at the littoral and northern ecotone sites. At the littoral site, nitrogen limited biomass in four of five incubations, although the largest biomass differences between the treatments and controls (≤3 μg cm−2 as chl) were probably not ecologically significant. Periphyton biomass at the western and southern ecotone sites was low compared to the other two sites. Increases in water column depth and associated declines in light penetration strongly correlated with periphyton growth and suggested that they may have limited growth most often at all three ecotone sites. Nitrogen also was found to limit periphyton growth approximately 20% of the time at the ecotone sites and phosphorus was found to limit growth once at the west site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldridge, F. J., E. J. Phlips & C. L. Schelske, 1995. The use of nutrient enrichment bioassays to test for spatial and temporal distribution of limiting factors affecting phytoplankton dynamics in Lake Okeechobee, Florida. Arch. Hydrobiol Beih. Ergebn. Limnol. 128: 177–190.

    Google Scholar 

  • American Public Health Association (APHA), 1995. Standard Methods for the Examination ofWater andWastewater. 19th edn. APHA, Washington, DC.

    Google Scholar 

  • Aumen, N. G., 1995. The history of human impacts, lake management and limnological research of Lake Okeechobee, Florida (U.S.). Arch. Hydrobiol Beih. Ergebn. Limnol. 45: 1–17.

    Google Scholar 

  • Axler, R. P. & J. E. Reuter, 1996. Nitrate uptake by phytoplankton and periphyton: whole-lake enrichments and mesocosm 15N experiments in an oligotrophic lake. Limnol. Oceanogr. 41: 659–671.

    Google Scholar 

  • Blumenshine, S. C., Y. Vadeboncoeur, D. M. Lodge, K. L. Cottingham & S. E. Knight, 1997. Benthic-pelagic links:responses of benthos to water-column nutrient enrichment. J. n. am. Benthol. Soc. 16: 466–479.

    Google Scholar 

  • Bull, L. A. & G. L. Warren, 1994.Kissimmee River-Lake Okeechobee-Everglades resource evaluation: Florida Freshwater Game and Fish Commission Report. Tallahassee, FL: 177 pp.

  • Carrick, H. J. & R. L. Lowe, 1988. Response of Lake Michigan benthic algae to in situ enrichment with si, n and p. Can. J. Fish. aquat. Sci. 45: 271–279.

    Google Scholar 

  • Carrick, H. J. & R. L. Lowe, 1989. Benthic algal response to n and p enrichment along a pH gradient. Hydrobiologia 179: 119–127.

    Google Scholar 

  • Daniels, G. L. & J. D. Felley, 1992. Life history and foods of Gambusia affinis in two waterways of southwestern Louisiana. Southwest Assoc. of Nat. 37: 157–165.

    Google Scholar 

  • Eriksson, P. G. & S. E. B. Weisner, 1996. Functional differences in epiphytic microbial communities in nutrient-rich freshwater ecosystems:an assay of denitrifying capacity. Freshwat. Biol. 36: 555–562.

    Google Scholar 

  • Fairchild, G.W. & R. L. Lowe, 1984. Artificial substrates which release nutrients:effects on periphyton and invertebrate succession. Hydrobiologia 114: 29–37.

    Google Scholar 

  • Fairchild, G. W., R. L. Lowe & W. B. Richardson, 1985. Algal periphyton growth on nutrient-diffusing substrates: an in situ bioassay. Ecology 66: 465–472.

    Google Scholar 

  • Fairchild, G. W. & A. C. Everett, 1988. Effects of nutrient (n, p, c) enrichment upon periphyton standing crop, species composition and primary production in an oligotrophic softwater lake. Freshwat. Biol. 19: 57–70.

    Google Scholar 

  • Fairchild, G. W., J. W. Sherman, & F. W. Acker, 1989. Effects of nutrient (n, p, c) enrichment, grazing and depth upon littoral periphyton of a softwater lake. Hydrobiologia 173: 69–83.

    Google Scholar 

  • Fairchild, G. W. & J. W. Sherman, 1992. Linkage between epilithic algal growth and water column nutrients in softwater lakes. Can. J. Fish. aquat. Sci. 49: 1641–1649.

    Google Scholar 

  • James, R. T., V. H. Smith & B. L. Jones, 1995. Historical trends in the Lake Okeechobee ecosystem: III. water quality. Arch. Hydrobiol. Monogr. Beit. 107: 48–69.

    Google Scholar 

  • Hansson, L-A., 1990. Quantifying the impact of periphytic algae on nutrient availability for phytoplankton. Freshwat. Biol. 24: 265–273.

    Google Scholar 

  • Hansson, L-A., 1992. Factors regulating periphytic algal biomass. Limnol. Oceanogr. 37: 322–328.

    Google Scholar 

  • Havens, K. E., T. E. East, R. H. Meeker, W. P. Davis & A. D. Steinman. 1996. Phytoplankton and periphyton responses to in situ experimental nutrient enrichment in a shallow subtropical lake. J. Plankton Res. 18: 551–566.

    Google Scholar 

  • Havens, K. E, T. E. East, A. J. Rodusky & B. Sharfstein. 1999. Littoral periphyton responses to nitrogen and phosphorus: an experimental study in a subtropical lake. Aquat. Bot. 1295: 1–24.

    Google Scholar 

  • Hecky, R. E., P. Campbell & L. L. Handsale, 1993. The stoichiometryof carbon, nitrogen and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38: 709–724.

    Google Scholar 

  • Henry, R., J. G. Tundisi & J. S. B. Ribeiro, 1985. Responses of phytoplankton in Lake Jacaretinga to enrichment with nitrogen and phosphorus in concentrations similar to those of the River Solimoes (Amazon, Brazil). Arch. Hydrobiol Beih. Ergebn. Limnol. 103: 453–477.

    Google Scholar 

  • Hwang, S. J.,K. E. Havens & A. D. Steinman, 1998. Phosphorus kinetics of planktonic and benthic assemblages in a shallow subtropical lake. Freshwat. Biol. 40: 1–17.

    Google Scholar 

  • Kjeldsen, K., 1996. Regulation of algal biomass in a small lowland stream: field experiments on the role of invertebrate grazing, phosphorus and irradiance.:Freshwat. Biol. 36: 535–546.

    Google Scholar 

  • Kratzer, C. R. & P. L. Brezonik, 1984. Application of nutrient loading models to the analysis of trophic conditions in Lake Okeechobee, FL. Environ. Manag. 8:1–11.

    Google Scholar 

  • Lowe, R. L., 1996. Periphyton patterns in lakes. In: Stevenson, R. J.,M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego, CA: 57–76.

    Google Scholar 

  • Maltais, M. J. & W. F. Vincent, 1997. Periphyton community structure and dynamics in a subarctic lake. Can. J. Bot. 75: 1556–1569.

    Google Scholar 

  • Mazumder, A. & K. E. Havens, 1998. Nutrient-chlorophyll-secchi relationships under contrasting grazer communities of temperate versus subtropical lakes. Can. J. Fish. aquat. Sci. 55: 1652–1662.

    Google Scholar 

  • McCormick, P. V., P. S. Rawlik, K. Lurding, E. P. Smith & F. K. Sklar, 1996.:Periphyton-water quality relationships along a nutrient gradient in the northern Florida Everglades. J. n. am. Benthol. Soc. 15:433–449.

    Google Scholar 

  • McCormick, P. V. & M. B. O'Dell, 1996. Quantifying periphyton responses to phosphorus in the Florida Everglades: a synopticexperimental approach. J. n. am. Benthol. Soc. 15: 450–468.

    Google Scholar 

  • Neiderhauser, P. & F. Schanz, 1993.Effects of nutrient (n, p, c) enrichment upon the littoral diatom community of an oligotrophic high-mountain lake. Hydrobiologia 269: 453–462.

    Google Scholar 

  • Phlips, E. J., F. J. Aldridge, P. Hansen, P. V. Zimba, J. Ihnat, M. Conroy & P. Ritter, 1993. Spatial and temporal variability of trophic state parameters in a shallow subtropical lake (Lake Okeechobee, Florida, U.S.A.). Arch. Hydrobiol Beih. Ergebn. Limnol. 128: 437–458.

    Google Scholar 

  • Phlips, E. J., M. Cichra, K. E. Havens, C. Hanlon, S. Badylak, B. Reuter, M. Randall & P. Hansen, 1997. Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow subtropical lake. J. Plankton Res. 19: 319–342.

    Google Scholar 

  • SAS, 1990. SAS/STAT users guide, version 6, third edition. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Schelske, C. L., 1989. Assessment of nutrient effects and nutrient limitation in Lake Okeechobee. Wat. Res. Bull. 25: 1119–1130.

    Google Scholar 

  • Steinman, A. D. & G. A. Lamberti, 1996. Biomass and pigments of benthic algae. In: Hauer, F. R. & G. A. Lamberti (eds), Stream Ecology: Field and Laboratory Exercises. Academic Press, San Diego, CA: 295–313.

    Google Scholar 

  • Steinman, A. D., R. H. Meeker, A. J. Rodusky, W. P Davis & C. D. McIntire, 1997a. Spatial and temporal distribution of algal biomass in a large, subtropical lake. Arch. Hydrobiol. 139: 29–50.

    Google Scholar 

  • Steinman, A. D., R. H. Meeker, A. J. Rodusky, W. P. Davis & S-J. Hwang, 1997b. Ecological properties of charophytes in a large subtropical lake. J. n. am. Benthol. Soc. 16: 781–793.

    Google Scholar 

  • South Florida Water Management District (SFWMD), 1995. Comprehensive quality assurance plan. South Florida Water Management District West Palm Beach, FL.

    Google Scholar 

  • USEPA,1979. Methods for chemical analysis of water and wastes. United States Environmental Protection Agency, Washington, DC.

  • USEPA,1987. Handbook of methods for acid deposition studies. United States Environmental Protection Agency, Washington, DC.

  • Wetzel, R. G., 1979. The role of the littoral zone and detritus in lake metabolism. Ergeb. Limnol. 13: 145–161.

    Google Scholar 

  • Winterbourn, M. J., 1990. Interactions among nutrients, algae and invertebrates in a New Zealand mountain stream. Freshwat. Biol. 23: 463–474.

    Google Scholar 

  • Zimba, P. V., 1995.Epiphytic algal biomass of the littoral zone, Lake Okeechobee, Florida (USA). Arch. Hydrobiol Beih. Ergebn. Limnol. 45: 233–240.

    Google Scholar 

  • Zimba, P. V., 1998. The use of nutrient enrichment bioassays to test for limiting factors affecting epiphytic growth in Lake Okeechobee, Florida: confirmation of nitrogen and silica limitation. Arch. Hydrobiol Beih. Ergebn. Limnol. 141: 459–468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodusky, A.J., Steinman, A.D., East, T.L. et al. Periphyton nutrient limitation and other potential growth-controlling factors in Lake Okeechobee, U.S.A.. Hydrobiologia 448, 27–39 (2001). https://doi.org/10.1023/A:1017529432448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017529432448

Navigation