Journal of Applied Electrochemistry

, Volume 31, Issue 5, pp 565–572 | Cite as

Optimization of Hydrogen evolving activity on Nickel–Phosphorus Deposits using Experimental Strategies

  • C.-C. Hu
  • A. Bai


The effects of electroplating variables on the hydrogen evolving activity of Ni–P deposits were systematically examined using fractional factorial design (FFD), path of steepest ascent, and central composite design (CCD) coupled with the response surface method (RSM). The FFD study indicates that the main and interactive effects of temperature, pH, and NaH2PO2·H2O concentration are the key preparation factors influencing the Ni–P cathode. Empirical models for apparent activity (i), specific activity (i/Ra), and phosphorus content (at %) are fitted against these three variables in the CCD study. These models, represented as contour diagrams, show that a Ni–P deposit with 7P at % exhibits the maximum electrocatalytic activity.

electroplating experimental design hydrogen evolution nickel–phosphorus deposits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.-C. Hu and C.-Y. Weng, J. Appl. Electrochem. 30 (2000) 499.Google Scholar
  2. 2.
    C.-C. Hu and T.-C. Wen, Electrochim. Acta 43 (1998) 1747.Google Scholar
  3. 3.
    C.-C. Hu and T.-C. Wen, J. Electrochem. Soc. 142 (1995) 1376.Google Scholar
  4. 4.
    K. Park, P.N. Pintauro, M.M. Baizer and K. Nobe, J. Appl. Electrochem. 16 (1986) 941.Google Scholar
  5. 5.
    M.J. Lain and D. Pletcher, Electrochim. Acta 32 (1987) 109.Google Scholar
  6. 6.
    S.J.C. Cleghorn and D. Pletcher, Electrochim. Acta 38 (1993) 425.Google Scholar
  7. 7.
    V. Anantharaman and P.N. Pintauro, J. Electrochem. Soc. 141 (1994) 1376 and 2742.Google Scholar
  8. 8.
    T.-C. Wen, S.-M. Lin and T.-M. Tsai, J. Appl. Electrochem. 24 (1994) 233.Google Scholar
  9. 9.
    D. Los, A. Rami and A. Lasia, J. Appl. Electrochem. 23 (1993) 135.Google Scholar
  10. 10.
    C.-C. Hu, C.-Y. Lin and T.-C. Wen, Mat. Chem. Phys. 44 (1996) 233.Google Scholar
  11. 11.
    R. Kötz and S. Stucki, J. Appl. Electrochem. 17 (1987) 1190.Google Scholar
  12. 12.
    T.-C. Wen and C.-C. Hu, J. Electrochem. Soc. 139 (1992) 2158.Google Scholar
  13. 13.
    I. Paseka, Electrochim. Acta 44 (1999) 4551.Google Scholar
  14. 14.
    R.K. Shervedani and A. Lasia, J. Electrochem. Soc. 144 (1997) 511.Google Scholar
  15. 15.
    J.J. Podesta, R.C.V. Piatti, A.J. Arvia, P. Ekundge, K. Juttner and G. Kreysa, Int. J. Hydrogen Energy 17 (1992) 9.Google Scholar
  16. 16.
    G.E.P. Box, W.G. Hunter and J.S. Hunter, 'Statistics for Experiments', (J. Wiley & Sons, New York, 1978), p. 374.Google Scholar
  17. 17.
    J.A. Cornell, 'How to Apply Response Surface Methodology', Vol. 8 (ASQC, Wisconsin, 1990).Google Scholar
  18. 18.
    D.C. Montgomery, 'Design and Analysis of Experiments', 4th edn (J. Wiley & Sons, Singapore, 1997).Google Scholar
  19. 19.
    A.J. Bard and L.R. Faulkner, 'Electrochemical Methods, Fundamentals and Applications' (J. Wiley & Sons, Singapore, 1980), p. 8.Google Scholar
  20. 20.
    R.L. McCreery and K.K. Cline, in P.T. Kissinger and W.R. Heineman (Eds), 'Laboratory Techniques in Electroanalytical Chemistry' (Marcel Dekker, Hong Kong, 1996), p. 295.Google Scholar
  21. 21.
    D. Pletcher and F.C. Walsh, 'Industrial Electrochemistry', 2nd edn (Chapman & Hall, New York, 1990), p. 395.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • C.-C. Hu
    • 1
  • A. Bai
    • 1
  1. 1.Department of Chemical EngineeringNational Chung Cheng UniversityChia-YiTaiwan

Personalised recommendations