Skip to main content
Log in

The Isoperimetric Inequality on Manifolds of Conformally Hyperbolic Type

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We prove that the maximal isoperimetric function on a Riemannian manifold of conformally hyperbolic type can be reduced to the linear canonical form P(x) = x by a conformal change of the Riemannian metric. In other words, the isoperimetric inequality \(P\left( {V\left( D \right)} \right) \leqslant {\text{S}}\left( {\partial {\text{D}}} \right)\), relating the volume V(D) of a domain D to the area \({\text{S}}\left( {\partial {\text{D}}} \right)\) of its boundary, can be reduced to the form \(\left( {V\left( D \right)} \right) \leqslant {\text{S}}\left( {\partial {\text{D}}} \right)\), known for the Lobachevskii hyperbolic space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Kesel'man and V. A. Zorich, “On the conformal type of a Riemannian manifold,” Funkts. Anal. Prilozhen., 30, No. 2, 40-55 (1996); English transl. in Functional Anal. Appl.,30, No. 2, 106-117 (1996).

    Google Scholar 

  2. V. A. Zorich, “Asymptotic geometry and conformal types of Carnot-Carathéodory spaces,” Geom. Funct. Anal., 9, No. 2, 393-411 (1999).

    Google Scholar 

  3. R. Grimaldi and P. Pansu, “Sur la croissance du volume dans une classe conforme,” J. Math. Pures Appl., 9(71), No. 1, 1-19 (1992).

    Google Scholar 

  4. V. A. Zorich and V. M. Kesel'man, “A canonical form for the isoperimetric inequality on manifolds of conformally hyperbolic type,” Usp. Mat. Nauk, 54, No. 3, 164-165 (1999); English transl. in Russian Math. Surveys,54, No. 3, 665-666 (1999).

    Google Scholar 

  5. M. Gromov, with appendices by M. Katz, P. Pansu, and S. Semmes, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkháuser, Boston-Basel-Berlin, 1999.

    Google Scholar 

  6. V. A. Zorich and V. M. Kesel'man, “Conformal type and isoperimetric dimension of a Riemannian manifold,” Mat. Zametki, 63, No. 3, 379-385 (1998); English transl. in Russian Math. Notes,63, No. 3-4, 333-337 (1998).

    Google Scholar 

  7. V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-Tokyo, 1985.

    Google Scholar 

  8. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Transl. Math. Monographs, Vol. 73, Amer. Math. Soc., Providence, R.I., 1989.

  9. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.

    Google Scholar 

  10. J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, 1993.

  11. Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin-New York, 1988.

    Google Scholar 

  12. H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.

    Google Scholar 

  13. L. Ahlfors, “Sur le type d'une surface de Riemann,” C. R. Acad. Sci. Paris, Ser. A, 201, 30-32 (1935).

    Google Scholar 

  14. L. Ahlfors, E. Calabi, M. Morse, L. Sario, and D. Spencer (eds.), Contributions to the Theory of Riemann Surfaces, Centennial celebration of Riemann's dissertation, Ann. of Math. Stud., Vol. 30, Princeton University Press, Princeton, 1953.

  15. J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian,” In: Problems in Analysis: A Symposium in Honor of Salomon Bochner, Princeton University Press, Princeton, 1970, pp. 195-199.

    Google Scholar 

  16. S. V. Cheng and S. T. Yau, “Differential equations on Riemannian manifolds and their geometric applications,” Comm. Pure Appl. Math., 28, 333-354 (1975).

    Google Scholar 

  17. J. Milnor, “On deciding whether a surface is parabolic or hyperbolic,” Amer. Math. Monthly, 84,1, 43-46 (1977).

    Google Scholar 

  18. N. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  19. A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion,” Bull. Amer. Math. Soc. (N.S.), 36, No. 2, 135-249 (1999).

    Google Scholar 

  20. A. Grigor'yan, “Isoperimetric inequality and capacities on Riemannian manifolds,” In: Oper. Theory Adv. Appl., vol. 109, Birkháuser Verlag, Basel, 1999, pp. 139-153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorich, V.A., Kesel'man, V.M. The Isoperimetric Inequality on Manifolds of Conformally Hyperbolic Type. Functional Analysis and Its Applications 35, 90–99 (2001). https://doi.org/10.1023/A:1017523114581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017523114581

Keywords

Navigation