Journal of Applied Electrochemistry

, Volume 31, Issue 6, pp 647–654 | Cite as

Hydrogen evolution and permeation into steel during zinc electroplating; effect of organic additives

  • L. Mirkova
  • G. Maurin
  • I. Krastev
  • C. Tsvetkova


The Devanathan and Stachurski diffusion membrane method was used to study the evolution of hydrogen and its permeation into a steel sheet during cathodic charging from a chloride electrolyte or during zinc electroplating. The influence of four different organic compounds, which are the components of various formulations derived to improve zinc electrocoatings, were also tested. At a high-charging current density, the permeation transients obtained in a chloride electrolyte without zinc ions exhibit a maximum attributed to hydrogen trapping in the subsurface layer on the entry side. The concentration of adsorbed hydrogen on the steel surface depends not only on the cathodic current density and the composition of the solution, but also on the influence of the organic additives on the recombination of hydrogen atoms. During zinc electrodeposition, the coating covers the substrate in a few seconds and acts as a barrier for hydrogen absorption. The permeation rate depends on the cathodic current density but also on the concentration of ZnCl2 in correlation with the porosity of the coating. It is shown that steel substrate hydrogenation (beneath the zinc coating) is strongly reduced in the presence of a combined additive, composed of four compounds in appropriate amounts as well as in the presence of PEG6000 in the plating bath. This effect, which is correlated to the modification of the hydrogen evolution process, can be used to hinder the severe drawbacks caused by hydrogen penetration into the steel substrate.

additives hydrogen permeation steel substrate zinc deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.J. Vetter, ‘Electrochemical Kinetics’ (Academic Press, New York, 1967), pp. 525–535.Google Scholar
  2. 2.
    J.O'M. Bockris and D.F.A. Koch, J. Phys. Chem. 64 (1961) 1941.Google Scholar
  3. 3.
    R.J. Barton, Proc. Am. Electroplaters Soc. 47 (1960) 30.Google Scholar
  4. 4.
    A.N. Frumkin, Z. Phys. Chem. 207 (1957) 321.Google Scholar
  5. 5.
    M.A.V. Devanathan and Z. Stachurski, J. Electrochem. Soc. 111 (1964) 619.Google Scholar
  6. 6.
    M.H. Abd Elhamid, B.G. Ateya and H.W. Pickering, J. Electrochem. Soc. 144 (1997) No4 L58.Google Scholar
  7. 7.
    T. Zakroczymski, J. Electrochem. Soc. 145 (1998) 1142.Google Scholar
  8. 8.
    D.M. Drazič, in B.E. Conway, J.O'M. Bockris and R.E. White (Ed.), ‘Modern Aspects of Electrochemistry’, vol. 19 (Plenum Press, New York, 1989), p. 69.Google Scholar
  9. 9.
    H. Vehoff, in H. Wipf (Ed), ‘Topics in Applied Physics’, vol. 73 (Springer Verlag, Berlin, 1997), p. 215.Google Scholar
  10. 10.
    M. Smialowski, ‘Hydrogen in Steel’ (Pergamon, London, 1962).Google Scholar
  11. 11.
    R. Oriani, Corrosion 43 (1987) 390.Google Scholar
  12. 12.
    W. Paatsch, Metalloberfläche 32 (1978) 546.Google Scholar
  13. 13.
    M. Monev, L. Mirkova, I. Krastev, Hr. Tsvetkova, St. Rashkov and W. Richtering, J. Appl. Electrochem. 28 (1998) 1107.Google Scholar
  14. 14.
    T. Casanova, F. Soto, M. Eyraud and J. Crousier, Corrosion Sci. 39 (1997) 529.Google Scholar
  15. 15.
    M.A.V. Devanathan and Z. Stachurski, Proc. Roy. Soc. (Lond.) A270 (1962) 90.Google Scholar
  16. 16.
    M.A.V. Devanathan, Z. Stachurski and W. Beck, J. Electrochem. Soc. 110 (1963) 886.Google Scholar
  17. 17.
    I.A. Bagotskaya, Zh. Fiz. Khim. (in Russian) 36 (1962) 2667.Google Scholar
  18. 18.
    J.O'M. Bockris, J. McBreen and L. Nanis, J. Electrochem. Soc. 112 (1965) 1025.Google Scholar
  19. 19.
    W. Beck, J.O'M. Bockris, J. McBreen and L. Nanis, Proc. Roy. Soc. (Lond.) A290 (1966) 220.Google Scholar
  20. 20.
    E. Gileadi, M.A. Fullenwider and J.O'M. Bockris, J. Electrochem. Soc. 113 (1966) 926.Google Scholar
  21. 21.
    S. Wach, Brit. Corr. J. 6 (May 1971) 114.Google Scholar
  22. 22.
    S. Wach, A.P. Miodownik and J. Mackowiak, Corr. Sic. 6 (1966) 271.Google Scholar
  23. 23.
    Z. Amrani, F. Huet, M. Jérôme, P. Manolatos and F. Wenger, J. Electrochem. Soc. 141 (1994) 2059.Google Scholar
  24. 24.
    A. Knödler, Metalloberfläche 40 (1986) 515.Google Scholar
  25. 25.
    S. Venkatesan, R. Subramanian and M.A.V. Devanathan, Metal Finish. (May 1966) 50.Google Scholar
  26. 26.
    Th.C. Franklin, Plat. Surf. Finish. 4 (1994) 62.Google Scholar
  27. 27.
    'Combined additive in medium acidic chloride electrolyte for zinc electroplating', Bulg. Patent 54483 (1981).Google Scholar
  28. 28.
    W. Raczynski and S. Talbot-Besnard, C.R. Acad. Sci. (France) 269 (1969), seriec, 294–296, 1253–1256 and 1498–1501.Google Scholar
  29. 29.
    J. McBreen, L. Nanis and W. Beck, J. Electrochem. Soc. 113 (1966) 1218.Google Scholar
  30. 30.
    G. Trejo, R.B. Ortega, Y.V. Meas, P.E. Ozil, E. Chainet and B. Nguyen, J. Electrochem. Soc. 145 (1998) 4090.Google Scholar
  31. 31.
    C.M. Beloglazov ‘Hydrogenation of Steel During Electrochemical Processes’ (Leningrad University Press, Leningrad, 1975), p. 324 (in Russian).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • L. Mirkova
    • 1
  • G. Maurin
    • 2
  • I. Krastev
    • 1
  • C. Tsvetkova
    • 1
  1. 1.Institute of Physical Chemistry, Bulgarian Academy of Sciences, Department “Elchim”Acad. G. BonchevSofiaBulgaria
  2. 2.UPR 15 du CNRS “Physique des Liquides et Electrochimie”Paris cedex 05France

Personalised recommendations