Advertisement

Journal of Applied Electrochemistry

, Volume 31, Issue 6, pp 671–676 | Cite as

Steady-state mass transport at stationary discs under divergent laminar radial flow conditions

  • F. Cœuret
  • T.Z. Fahidy
Article

Abstract

This paper deals with global and local wall-to-liquid mass transfer under divergent laminar radial flow conditions between two parallel stationary discs. Approximate theoretical expressions for local and overall transport rates in piston flow and Poiseuille flow, and empirical correlations from the literature, are compared to experimental observations utilizing the electrochemical method of rate measurement. The experimental results support the theoretical approach for this laminar flow regime, the latter expanding the scope of the applicability of electrochemical methods presented in the literature.

electrochemical reactor laminar radial flow mass transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ashworth and R.E.W. Jansson, Electrochim. Acta 22 (1977) 1295.Google Scholar
  2. 2.
    J. Ghoroghchian, R.E.W. Jansson and R.J. Marshall, Electrochim. Acta 24 (1979) 1175.Google Scholar
  3. 3.
    E. Bezerra Cavalcanti and F. Cœuret, J. Appl. Electrochem. 28 (1998) 1419.Google Scholar
  4. 4.
    R. Dworak and H. Wendt, Ber. Bunsen-Gessellschaft 80 (1976) 77.Google Scholar
  5. 5.
    R.A. Thomas and M.H. Cobble, J. Heat Transf. 85 (1963) 189.Google Scholar
  6. 6.
    F. Kreith, Thèse, Université de Paris (1965).Google Scholar
  7. 7.
    F. Kreith, Compt. Rend. Acad. Sci. Paris 260 (1965) 62.Google Scholar
  8. 8.
    F. Kreith, Int. J. Heat Mass Transf. 9 (1966) 265.Google Scholar
  9. 9.
    S. Mochizuki and M. Yao, Trans. Japan Soc. Mech. Eng. 49 (1983) 426.Google Scholar
  10. 10.
    R. Bird, W.E. Stewart and E.N. Lightfoot, ‘Transport Phenomena’ (J. Wiley & Sons, New York, 1960), p. 353.Google Scholar
  11. 11.
    R. Bird, W.E. Stewart and E.N. Lightfoot, op cit. [10], p. 551.Google Scholar
  12. 12.
    R. Selman and C.W. Tobias, ‘Mass transfer measurements by the limiting current technique’, Adv. Chem. Eng. 10 (Academic Press, New York, 1978), p. 86.Google Scholar
  13. 13.
    S. Ishizawa, Bull. Jap. Soc. Mech. Eng. 9 (1985) 377.Google Scholar
  14. 14.
    R.E.W. Jansson and R.J. Marshall, J. Appl. Electrochem. 8 (1978) 287.Google Scholar
  15. 15.
    R.V. Shenoy and J.M. Fenton, Int. J. Heat Mass Transf. 33 (1990) 2059.Google Scholar
  16. 16.
    J.L. Peube, J. Mécan. (Paris) 4 (1963) 377.Google Scholar
  17. 17.
    S. Mochizuki and W.J. Yang, J. Fluid Mech. 154 (1985) 377.Google Scholar
  18. 18.
    Z. Fahidy and F. Cœuret, Can. J. Chem. Eng., 79 (2001) 132.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • F. Cœuret
    • 1
  • T.Z. Fahidy
    • 2
  1. 1.Laboratoire de ThermocinétiqueUMR CNRS 6607-Nantes, implantation Ecole Louis de BroglieBruzFrance
  2. 2.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations