Skip to main content
Log in

A Comparative Study of the Determination of Ferrofluid Particle Size by Means of Rotational Brownian Motion and Translational Brownian Motion

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Two methods, the Toroidal Technique and the Forced Rayleigh Scattering (FRS) method, were used in the determination of the size of magnetic particles and their aggregates in magnetic fluids. The toroidal technique was used in the determination of the complex, frequency dependent magnetic susceptibility, x(w)=x'(w) - ix"(w) of magnetic fluids consisting of two colloidal suspensions of cobalt ferrite in hexadecene and a colloidal suspension of magnetite in isopar m with corresponding saturation magnetisation of 45.5 mT, 20 mT and 90 mT, respectively. Plots of the susceptibility components against frequency f over the range 10 Hz to 1 MHz, are shown to have approximate Debye-type profiles with the presence of relaxation components being indicated by the frequency, f max, of the maximum of the loss-peak in the x"(w) profiles. The FRS method (the interference of two intense laser beams in the thin film of magnetic fluid) was used to create the periodical structure of needle like clusters of magnetic particles. This creation is caused by a thermodiffusion effect known as the Soret effect. The obtained structures are indicative of as a self diffraction effect of the used primary laser beams. The relaxation phenomena arising from the switching off of the laser interference field is discussed in terms of a spectrum of relaxation times. This spectrum is proportional to the hydrodynamic particle size distribution. Corresponding calculations of particle hydrodynamic radius obtained by both mentioned methods indicate the presence of aggregates of magnetic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.L. Mackor: J. Colloid Sci. 65 (1951) 492.

    Google Scholar 

  2. R.E. Rosensweig, J.W. Nestot, and R.S. Timmins: Al ChE-I. Chem. Eng. Ser. 5 (1965) 104.

    Google Scholar 

  3. S.W. Charles: Chem. Eng. Commun. 67 (1988) 145.

    Google Scholar 

  4. P.G. De Gennes and P.A. Pincus: Phys. Kondens. Materie 67 (1970) 189.

    Google Scholar 

  5. P.C. Jordan: Mol. Phys. 25 (1973) 961.

    Google Scholar 

  6. P.C. Scholten: J. Magn. Magn. Mater. 9 (1983) 99.

    Google Scholar 

  7. P.C. Fannin, B.K.P. Scaife, and S.W. Charles: J. Phys. E: Sci. Instrum. 19 (1986) 238.

    Google Scholar 

  8. J.C. Bacri, A. Cebers, A. Bourdon, G. Demouchy, B.M. Heegaard, and R. Perzynski: Phys. Rev. Lett. 74 (1995) 5032.

    Google Scholar 

  9. W.F. Brown: J. Appl. Phys. 34 (1963) 1319.

    Google Scholar 

  10. L. Néel: Ann. Geophys. 5 (1949) 99.

    Google Scholar 

  11. W.F. Brown: Phys. Rev. 130 (1963) 1677.

    Google Scholar 

  12. E. Kneller and E.P. Wohlfarth: J. Appl. Phys. 37 (1966) 4816.

    Google Scholar 

  13. M.I. Shliomis and Yu.L. Raikher: IEEE Trans. Magn. 16 (1980) 237.

    Google Scholar 

  14. M.I. Shliomis: Sov. Phys. Usp. 17 (1974) 53.

    Google Scholar 

  15. P.C. Fannin: J. Magn. Magn. Mater. 49 (1994) 1362.

    Google Scholar 

  16. P. Debye: Polar Molecules, The Chemical Catalog Comp., Ltd., New York, 1929.

    Google Scholar 

  17. P.C. Fannin, B.K.P. Scaife and S.W. Charles: J. Magn. Magn. Mater. 72 (1988) 95.

    Google Scholar 

  18. B.K. Scaife: Principes of Dielectric, Clarendon Press, Oxford, 1989.

    Google Scholar 

  19. P.C. Fannin and S.W. Charles: J. Phys. D: Appl. Phys. 22 (1989) 187.

    Google Scholar 

  20. K. Thyagarajan and P. Lallemand: Opt. Commun. 26 (1978) 54.

    Google Scholar 

  21. D.W. Pohl: Phys. Let. A 77 (1980) 53.

    Google Scholar 

  22. W. Koehler: J. Chem. Phys. 98 (1993) 660.

    Google Scholar 

  23. N.V. Tabiryan and W. Luo: Phys. Rev. E 57 (1998) 4431.

    Google Scholar 

  24. J.C. Bacri, J. Dumas, D. Gorse, R. Perzynski, and D. Salin: J. Physique Lett. 46 (1985) 1199.

    Google Scholar 

  25. G. Knuyt, H. Stulens, W. De Ceuninck, G.J. Beck, and L.M. Stals: Philos. Mag. B 65 (1992) 1053.

    Google Scholar 

  26. A. Kasardová, V. Ocelík, K. Csach, and J. Miškuf: Philos. Mag. Lett. 71 (1995) 257.

    Google Scholar 

  27. A. Tari, J. Popplewell, and S.W. Charles: J. Magn. Magn. Mater. 15–18 (1980) 1125.

    Google Scholar 

  28. J.-L. Dormann, D. Fiorani, and E. Tronc: Adv. Chem. Phys. 9 (1997) 283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fannin, P., Charles, S., Kopčanský, P. et al. A Comparative Study of the Determination of Ferrofluid Particle Size by Means of Rotational Brownian Motion and Translational Brownian Motion. Czechoslovak Journal of Physics 51, 599–608 (2001). https://doi.org/10.1023/A:1017508620729

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017508620729

Navigation