Skip to main content
Log in

Morphological differentiation within the Daphnia longispina group

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although morphological evolution is assumed to be slow within Daphnia species complexes, discontinuities in morphological space can be detected. Here, morphological data derived from females of genetically-defined clones (cf. Gießler et al., 1999) are presented, in order to estimate the genetic component of phenotypic variance under standardised laboratory conditions. Animals originated from clonal assemblages of pre-alpine lakes and ponds, and a remote lake in western Germany, covering a wide range of morphotypes known from the traditional species D. cucullata, D. galeata, D. hyalina, D. rosea, and a variety of interspecific hybrids. Phenotypic analyses were based on quantitative and qualitative morphological characters of females in the first and fifth instars. Morphological divergence between clones was analysed using discriminant analysis or multidimensional scaling and the significance of the morphological groupings was estimated using neighbour-joining trees and bootstrapping. All analyses confirmed that (a) phenotypic similarities among taxa change with instar, (b) in contrast to low genetic divergence, pronounced morphological divergence exists between animals separated on the lake/pond level favouring speciation by the habitat shift hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal A. A., C. Laforsch & R. Tollrian, 1999. Transgenerational induction of defences in animals and plants. Nature 401: 60–63.

    Google Scholar 

  • Boersma, M., P. Spaak & L. De Meester, 1998. Predator-mediated plasticity in morphology, life-history, and behavior of Daphnia: the uncoupling of responses. Am. Nat. 152: 237–248.

    Google Scholar 

  • Bookstein, F., B. Chernoff, R. Elder, J. Humphries, G. Smith & R. Strauss, 1985. Morphometrics in Evolutionary Biology. The Academy of Natural Sciences of Philadelphia.

  • Brooks, J. L., 1957. The systematics of North American Daphnia. Memoirs of the Connecticut Acad. Arts Sci. 13: 1–180.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Google Scholar 

  • Colbourne, J. K. & P. D. N. Hebert, 1996. The systematics of North American Daphnia (Crustacea: Anomopoda): a molecular phylogenetic approach. Phil. Trans. R. Soc. Lond. B 351: 349–360.

    Google Scholar 

  • Colbourne, J. K., P. D. N. Hebert & D. J. Taylor, 1997. Evolutionary origins of phenotypic diversity in Daphnia. In Givnish, T. J. & K. J. Sytsma (eds), Molecular Evolution and Adaptive Radiation. Cambridge University Press: 163–188.

  • De Meester L., L. J. Weider & R. Tollrian, 1995. Alternative antipredator defences and genetic polymorphism in a pelagic predator-prey system. Nature 378: 483–485.

    Google Scholar 

  • Dodson, S. I. & J. E. Havel, 1988. Indirect prey effects: some morphological and life history responses of Daphnia pulex exposed to Notonecta undulata. Limnol. Oceanogr. 33: 1274–1285.

    Google Scholar 

  • Englbrecht, C., 1995. Genetische Charakterisierung von Daphnia hyalina und D. rosea (Crustacea, Phyllopoda), zweier Arten aus dem D. longispina Hybridartenkomplex: RAPD-PCR und Analyse der internal transcribed spacer (ITS). Diplome thesis, LMU Munich, Germany.

    Google Scholar 

  • Flößner, D., 1972. Kiemen-und Blattfüßer, Branchiopoda, Fischläuse, Branchiura. In Dahl, F. (ed.), Die Tierwelt Deutschlands. Gustav Fischer Verlag, Jena: 1–499.

    Google Scholar 

  • Flößner, D., 1993. Zur Kenntnis einiger Daphnia-Hybriden. Limnologica 23: 71–79.

    Google Scholar 

  • Gießler, S., 1987. Mikroevolution and Populationsgenetik im Daphnia galeata /hyalina /cucullata-Komplex (Crustacea: Cladocera). Eine Freilandanalyse. Ph.D. thesis, University of Munich, Germany.

    Google Scholar 

  • Gießler, S., 1997a. Analysis of reticulate relationships within the Daphnia longispina complex. Allozyme phenotype and morphology. J. Evol. Biol. 10: 87–105.

    Google Scholar 

  • Gießler, S., 1997b. Gene flow in the Daphnia longispina hybrid complex (Crustacea, Cladocera) inhabiting large lakes. Heredity 79: 231–241.

    Google Scholar 

  • Gießler, S., E. Mader & K. Schwenk, 1999. Morphological evolution and genetic differentiation in Daphnia species complexes. J. Evol. Biol. 12: 710–723.

    Google Scholar 

  • Harrison, M. K. & B. J. Crespi, 1999. A phylogenetic test of ecomorphological adaptations in Cancer crabs. Evolution 53: 961–965.

    Google Scholar 

  • Hebert, P. D. N., S. S. Schwartz & J. Hrbáček, 1989. Patterns of genotypic diversity in Czecheslovakian Daphnia. Heredity 62: 207–216.

    Google Scholar 

  • Hrbáček, J., 1987. Systematics and biogeography of Daphnia species in the northern temperate regions. Mem. Ist. ital. Idrobiol. 45: 37–76.

    Google Scholar 

  • Jacobs, J., 1977. Coexistence of similar zooplankton species by differential adaptation to reproduction and escape, in an environment with fluctuating food and enemy densities. II. Field data analysis of Daphnia. Oecologia 30: 313–329.

    Google Scholar 

  • Jacobs, J., 1980. Environmental Control of Cladoceran Cyclomorphosis via Target-Specific Growth Factorsin the Animal. In Kerfoot, W. Ch. (ed.), Evol. & Ecol. of Zoopl. Com., Univ. Press of New England: 429–437.

  • Krüger, D. A. & S. Dodson, 1981. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. 26: 219–223.

    Google Scholar 

  • Lampert, W., 1993. Phenotypic plasticity of the size at 1st reproduction in Daphnia - the importance of maternal size. Ecology 74: 1455–1466.

    Google Scholar 

  • Leibold, M. A., 1991. Trophic interactions and habitat segregation between competing Daphnia spp. Oecologia 86: 510–520.

    Google Scholar 

  • McPeek, M. A., 1995. Testing hypothesis about evolutionary change on single branches of a phylogeny using evolutionary contrasts. Am. Nat. 145: 686–703.

    Google Scholar 

  • Müller, J., 1993. Räumliche und zeitliche Variabilität der genetischen Struktur natürlicher Cladocerenpopulationen (Crustacea, Cladocera). Ph.D. thesis, J. Gutenberg-Universität, Mainz, Germany.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.

    Google Scholar 

  • Felsenstein, J., 1993. Phylip (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Richards, R. A., 1992. Habitat selection and predator avoidance: ontogenetic shifts in habitat use by the Jonah crab Cancer borealis (Stimpson). J. exp. mar. Biol. Ecol. 156: 187–197.

    Google Scholar 

  • Schwenk, K., 1993. Interspecific hybridization in Daphnia: distinction and origin of hybrid matrilines. Mol. Biol. Evol. 10: 1289–1302.

    Google Scholar 

  • Schwenk, K., A. Sand, M. Boersma, M. Brehm, E. Mader, D. Offerhaus & P. Spaak, 1998. Genetic markers, genealogies and biogeographic patterns in the cladocera. Aquat. Ecol. 32: 37–51.

    Google Scholar 

  • Spaak, P. & J. R. Hoekstra, 1995. Life history variation and the coexistence of a Daphnia hybrid with its parental species. Ecology 76: 553–564.

    Google Scholar 

  • Spitze, K., 1992. Predator-mediated plasticity of prey life history and morphology - Chaoborus americanus predation on Daphnia pulex. Am. Nat. 139: 229–247.

    Google Scholar 

  • SPSS, 1996. SPSS Reference Guide. SPSS/PC version 6.1. Chicago, Illinois.

  • Stibor, H., 1992. Predator-induced life-history shifts in a freshwater cladoceran. Oecologica 92: 162–165.

    Google Scholar 

  • Stibor, H. & W. Lampert, 2000. Components of additive variance in life-history traits of Daphnia hyalina: seasonal differences in the response to predator signals. Oikos 88: 129–138.

    Google Scholar 

  • Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 291: 396–398.

    Google Scholar 

  • Taylor, B. E. & W. Gabriel, 1992. To grow or not to grow: optimal resource allocation for Daphnia. Am. Nat. 139: 248–266.

    Google Scholar 

  • Taylor, D. J. & P. D. N. Hebert, 1993a. Habitat-dependent hybrid parentage and differential introgression between neighboringly sympatric Daphnia species. Proc. natn. Acad. Sci. U.S.A. 90: 7079–7083.

    Google Scholar 

  • Taylor, D. J. & P. D. N. Hebert, 1993b. Cryptic intercontinental hybridization in Daphnia (Crustacea) - the ghost of introductions past. Proc. Roy. Soc. Lond. B 254: 163–168.

    Google Scholar 

  • Taylor, D. J., P. D. N. Hebert & J. K. Colbourne, 1996. Phylogenetics and Evolution of the Daphnia longispina group (Crustacea) based on 12S rDNA sequence and allozyme variation. Molec. Phylogenet. Evol. 5: 495–510.

    Google Scholar 

  • Tollrian, R., 1995. Predator-induced morphological defences: costs, life history shifts and maternal effects in Daphnia pulex. Ecology 76: 1691–1705.

    Google Scholar 

  • Tollrian, R. & S. I. Dodson, 1998. Inducible defenses in Cladocera: constraints, costs and multipredator environments. In Tollrian, R. & C. D. Harvell (eds), Ecology and Evolution of inducible defenses. Princeton University Press: 177–202.

  • Weider L. J., A. Hobæk, J. K. Colbourne, T. J. Crease, F. Dufresne & P. D. N. Hebert, 1999. Holarctic phylogeography of an asexual species complex I. Mitochondrial DNA variation in arctic Daphnia. Evolution 53: 777–792.

    Google Scholar 

  • Weider, L. J. & J. Pijanowska, 1993. Plasticity of Daphnia life histories in response to chemical cues from predators. Oikos 67: 385–392.

    Google Scholar 

  • Wellborn, G. A., 1994. Size-biased predation and prey life histories: a comparative study of freshwater amphipod populations. Ecology 75: 2104–2117.

    Google Scholar 

  • Wolf, H. G. & M. A. Mort, 1986. Inter-specific hybridization underlies phenotypic variability in Daph-nia populations. Oecologia 68: 507–511.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gießler, S. Morphological differentiation within the Daphnia longispina group. Hydrobiologia 442, 55–66 (2001). https://doi.org/10.1023/A:1017504803506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017504803506

Navigation