Skip to main content
Log in

Cosmic Masks Still Dance

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The Hubble classification scheme of galaxies is based on their optical appearance or `masks'. As one goes from early to late type spirals, both barred and unbarred, the optical appearance will be dominated more and more by the young Population I, i.e., blue stars and dust. Atlases reveal the rich variety of responses of the Population I component of gas and dust (the mask) to the underlying, older, stellar population. However, the gaseous Population I component, may only constitute 5 percent of the dynamical mass of the galaxy. Masks of negligible mass may conceal the human face – and that of galaxy. In the near-infrared, the morphology of older star-dominated disk indicates a simple classification scheme: the dominant Fourier m-mode in the dust penetrated regime, and the associated pitch angle. A ubiquity of low m=1 and m=2 modes is confirmed. On the basis of deprojected H (1.65 μm) and K′ (2.1μm) images, we propose that the evolved stellar disks may be grouped into three principal dust penetrated archetypes: those with tightly wound stellar arms characterised by pitch angles atK′ of ∼ 10° (the α class),an intermediate group with pitch angles of ∼ 25° (theβ class) and thirdly, those with open spirals demarcated by pitch angles at K′ of∼ 40° (the γ bin). Flat or falling rotation curves give rise to the tightly woundα class; rising rotation curves are associated with the openγ class. The observed dust penetrated classes are inextricably related to the rate of shear in the stellar disk, as determined by A/ω. Here A is the first Oort constant andω denotes the angular velocity. There is no correlation between our dust penetrated classes and optical Hubble binning; the Hubble tuning fork does not constrain the morphology of the old stellar Population II disks. NGC 3223 and NGC 7083 (both SbI-II and almost the same absolute blue magnitude) have identical Hubble types and identical luminosity classes; the dust penetrated disk of NGC3223 has tightly wrapped arms of class α, whereas the near-infrared disk of NGC 7083 has open arms of class γ.This is in turn associated with their very different rotation curve shapes yielding different rates of shear A/ω; in their stellar disks. Any specific dust penetrated archetype may be the resident disk of both an early or late type galaxy. The number of arms and the pitch angle of the arms at K′of the early-type `a' spiral NGC 718 are almost identical to those for the late-type `c' spiral NGC 309. We demonstrate that galaxies on opposite ends of the tuning fork can display remarkably similar evolved disk morphologies and belong to the same dust penetrated class. In this sense, there is no differentiation between a nearly and late type galaxy: the Hubble tuning fork becomes a circle. Furthermore, a proto typically flocculent galaxy such as NGC 5055 (Elmegreen arm class 3) can have an evolved disk morphology almost identical to that of NGC 5861,characterised in the optical as having one of the most regular spiral patterns known and of Elmegreen class 12.Both optically flocculent or grand design galaxies can reside within the same dust penetrated morphological bin. As was suggested by Block et al. (1994a), it is the gas dominated Population I component which determines the optical types (a, b, c). This may be partially or even fully decoupled from the Population II disk. Those L=lopsided galaxies (where m=1 is a dominant mode) are designatedLα, Lβ and Lγ according to the dust penetrated pitch angle; E=evensided galaxies (where m=2 is the dominant Fourier mode) are classified into classes Eα, Eβ andEγ, according to our three principal dust penetrated archetypes. The L and E modes are the most common morphologies in our sample, which spans a range of Hubble types from early (a) to late (irregular).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afanasiev, V.L., Burenkov, A.N., Zasov, A.V. and Sil'chenko, O.K.: 1998, Astrofizica 28, 243.

    ADS  Google Scholar 

  • Allen, R.J.: 1996, in: D.L. Block and J.M. Greenberg (eds.), New Extragalactic Perspectives in the New South Africa, Kluwer Academic Publishers, Dordrecht, 608.

    Google Scholar 

  • Baldwin, J.E., Lynden-Bell, D. and Sancisi, R.: 1980, MNRAS 193, 313.

    ADS  Google Scholar 

  • Benedict, G.F., Higdon, J.L., Tollestrup, E.V., Hahn, J.M. and Harvey, P.M.: 1992, AJ 103, 757.

    Article  ADS  Google Scholar 

  • Bertin, G., Lin, C.C., Lowe, S.A. and Thurstans, R.P.: 1989a, ApJ 338, 78.

    Article  MathSciNet  ADS  Google Scholar 

  • Bertin, G., Lin, C.C., Lowe, S.A. and Thurstans, R.P.: 1989b, ApJ 338, 104.

    Article  MathSciNet  ADS  Google Scholar 

  • Bertin, G.: 1991, IAU 146, Dynamics of Galaxies and Their Molecular Cloud Distributions, Kluwer, 93.

  • Bertin, G.: 1993, PASP 105, 604.

    Article  ADS  Google Scholar 

  • Bertin, G.: 1996, in: D.L. Block and J.M. Greenberg (eds.), New Extragalactic Perspectives in the New South Africa, Kluwer Academic Publishers, Dordrecht, 227.

    Google Scholar 

  • Bertin, G. and Lin, C.C.: 1996, Spiral Structure in Galaxies: A density wave theory, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Block, D.L.: 1982, A&A 109, 336.

    ADS  Google Scholar 

  • Block, D.L. and Wainscoat, R.J.: 1991, Nature 353, 48.

    Article  ADS  Google Scholar 

  • Block, D.L., Bertin, G., Stockton, A., Grosbøl, P., Moorwood, A.F.M. and Peletier, R.F.: 1994a, A&A 288, 365.

    ADS  Google Scholar 

  • Block, D.L., Witt, A.N., Grosbøl, P. and Stockton, A.: 1994b, A&A 288, 383.

    ADS  Google Scholar 

  • Block, D.L.: 1996, in: D.L. Block and J.M. Greenberg (eds.), New Extragalactic Perspectives in the New South Africa, Kluwer Academic Publishers, Dordrecht, 1.

    Google Scholar 

  • Block, D.L., Elmegreen, B.G. and Wainscoat, R.J.: 1996, Nature 381, 674.

    Article  ADS  Google Scholar 

  • Block, D.L. and Puerari, I.: 1999, A&A 342, 627.

    ADS  Google Scholar 

  • Block, D.L., Stockton, A., Elmegreen, B.G. and Willis, J.: 1999, ApJ 522, L25.

    Article  ADS  Google Scholar 

  • Burbidge, E.M., Burbidge, G.R. and Prendergast, K.H.: 1961, ApJ 134, 874.

    Article  ADS  Google Scholar 

  • Burstein, D. and Rubin, V.: 1985, ApJ 297, 423.

    Article  ADS  Google Scholar 

  • Buta, R. and Crocker, D.A.: 1991, AJ 102, 1715.

    Article  ADS  Google Scholar 

  • Buta, R., Crocker, D.A. and Byrd, G.G.: 1992, AJ 103, 1526.

    Article  ADS  Google Scholar 

  • Buta, R., Alpert, A.J., Cobb, M.L., Crocker, D.A. and Purcell, G.B.: 1998, AJ 116, 1142.

    Article  ADS  Google Scholar 

  • Byrd, G.G., Thomasson, M., Donner, K.J., Sundelius, B., Huang, T.-Y. and Valtonen, M.J.: 1989, Celestial Mechanics 45, 31.

    Article  ADS  Google Scholar 

  • Casertano, S., and van Gorkom, J.H.: 1991, AJ 101, 1231.

    Article  ADS  Google Scholar 

  • Charlot, S., Worthey, G. and Bressan, A.: 1996, ApJ 457, 625.

    Article  ADS  Google Scholar 

  • Comte, G.: 1981, A&AS 44, 441.

    ADS  Google Scholar 

  • Conselice, C.J.: 1997, PASP 109, 1251.

    Article  ADS  Google Scholar 

  • Considére, S. and Athanassoula, E.: 1988, A&AS 76, 365.

    ADS  Google Scholar 

  • Danver, C.G.: 1942, Lund. Obs. Ann 10.

  • Elmegreen, B.G., Elmegreen, D.M. and Seiden, P.E.: 1989, ApJ 343, 602.

    Article  ADS  Google Scholar 

  • Elmegreen, B.G. and Block, D.L.: 1999, MNRAS 303, 133.

    Article  ADS  Google Scholar 

  • Elmegreen, D.M. and Elmegreen, B.G.: 1984, ApJS 54, 127.

    Article  ADS  Google Scholar 

  • Elmegreen, D.M. and Elmegreen, B.G.: 1987, ApJ 314, 3.

    Article  ADS  Google Scholar 

  • Freeman, K.C.: 1970, ApJ 160, 811.

    Article  ADS  Google Scholar 

  • Frogel, J.A., Quillen, A.C. and Pogge, R.W.: 1996, in: D.L. Block and J.M. Greenberg (eds.), New Extragalactic Perspectives in the New South Africa, Kluwer Academic Publishers, Dordrecht, 65.

    Google Scholar 

  • Fuchs, B.: 1991, in: B. Sundelius (ed.), Dynamics of Disc Galaxies, Chalmers University of Technology, 359.

  • Fuchs, B., 2000, in: F. Combes and G. Mamon (eds.), Galaxy Dynamics: from the Early Universe to the Present, in press.

  • García-Gómez C. and Athanassoula E.: 1993, A&AS 100, 431.

    ADS  Google Scholar 

  • Goldreich, P. and Lynden-Bell, D.: 1965, MNRAS 130, 125.

    ADS  Google Scholar 

  • Grosbøl, P. and Patsis, P.A.: 1996, in: D.L. Block and J.M. Greenberg (eds.), New Extragalactic Perspectives in the New South Africa, Kluwer Academic Publishers, Dordrecht, 251.

    Google Scholar 

  • Grosbøl, P. and Patsis, P.A.: 1998, A&A 336, 840.

    ADS  Google Scholar 

  • Hubble, E.: 1936, The Realm of the Nebulae, Dover Publishers.

  • Huchtmeier, W.K. and Bohnenstengel, H.-D.: 1981, A&A 100, 72.

    ADS  Google Scholar 

  • Kennicutt, R.C.: 1981, AJ 86, 1847.

    Article  ADS  Google Scholar 

  • Lin, C.C.: 1971, in: C. de Jager (eds.), Highlights of Astronomy Vol. 2, D. Reidel, Dordrecht, 88.

    Google Scholar 

  • Lowe, S.A., Roberts, W.W., Yang, J., Bertin, G. and Lin, C.C.: 1994, ApJ 427, 184.

    Article  ADS  Google Scholar 

  • Lynds, B.T.: 1974, ApJS 28, 391.

    Article  ADS  Google Scholar 

  • Martin, P.G. and Whittet, D.G.B.: 1990, ApJ 357, 113.

    Article  ADS  Google Scholar 

  • Morgan, W.W.: 1958, PASP 70, 364.

    Article  ADS  Google Scholar 

  • Oort, J.H.: 1970, IAU 38, The Spiral Structure of Our Galaxy, D. Reidel, Dordrecht, 1.

    Google Scholar 

  • Persic, M. and Salucci, P.: 1995, ApJS 99, 501.

    Article  ADS  Google Scholar 

  • Pfenniger, D., Martinet, L. and Combes, F.: 1996, in: D.L. Block and J.M. Greenberg (eds.), New Extragalactic Perspectives in the New South Africa, Kluwer Academic Publishers, Dordrecht, 291.

    Google Scholar 

  • Puerari, I. and Dottori, H.A.: 1992, A&AS 93, 469.

    ADS  Google Scholar 

  • Puerari, I. and Dottori, H.: 1997, ApJ 476, L73.

    Article  ADS  Google Scholar 

  • Rhoads, J.E.: 1997, in: G.A. Mamon, T.H. Thuân and J.R.T. Vân (eds.), Extragalactic Astronomy in the Infrared, Editions Frontières, 45.

  • Rix, H.-W.: 1993, PASP 105, 999.

    Article  ADS  Google Scholar 

  • Rix, H.-W. and Rieke, M.J.: 1993, ApJ 418, 123.

    Article  ADS  Google Scholar 

  • Rogstad, D.H., Jockhart, I.A. and Wright, M.C.H.: 1974, ApJ 193, 309.

    Article  ADS  Google Scholar 

  • Rubin, V.C., Ford, W.K. and Thonnard, N.: 1980, ApJ 238, 471.

    Article  ADS  Google Scholar 

  • Rubin, V.C., Ford, W.K., Thonnard, N. and Burstein, D.: 1982, ApJ 261, 439.

    Article  ADS  Google Scholar 

  • Sandage, A.: 1961, Hubble Atlas of Galaxies, Washington DC, Carnegie Institution.

    Google Scholar 

  • Sandage, A. and Tammann, G.A.: 1987, A Revised Shapley-Ames Catalog of Bright Galaxies, Carnegie Institution of Washington, Publication 635.

  • Sandage, A. and Bedke, J.: 1994, The Carnegie Atlas of Galaxies, Washington DC, Carnegie Institution.

    Google Scholar 

  • Schröder, M.F.S., Pastoriza, M.G., Kepler, S.O. and Puerari, I.: 1994, A&AS 108, 41.

    ADS  Google Scholar 

  • Seigar, M.S. and James, P.A.: 1998, MNRAS 299, 685.

    Article  ADS  Google Scholar 

  • Shaw, M.A., Combes, F., Axon, D.J. and Wright, G.S.: 1993, A&A 273, 31.

    ADS  Google Scholar 

  • Spinrad, H. and Harlan, E.: 1972, PASP 85, 815.

    Article  ADS  Google Scholar 

  • Thornley, M.D.: 1996, ApJ 469, L45.

    Article  ADS  Google Scholar 

  • Thronson, H.A., Rubin, H. and Ksir, A.: 1991, MNRAS 252, 550.

    ADS  Google Scholar 

  • Tilanus, R.P.J. and Allen, R.J.: 1993, A&A 274, 707.

    ADS  Google Scholar 

  • Toomre, A.: 1981, in: S.M. Fall and D. Lynden-Bell (eds.), The structure and evolution of normal galaxies, Cambridge Univ Press, 111.

  • van den Bergh, S.: 1960, ApJ 131, 215.

    Article  ADS  Google Scholar 

  • Zwicky, F.: 1957, Morphological Astronomy, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Block, D.L., Puerari, I., Frogel, J.A. et al. Cosmic Masks Still Dance. Astrophysics and Space Science 269, 5–29 (1999). https://doi.org/10.1023/A:1017099302995

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017099302995

Keywords

Navigation