Skip to main content
Log in

Facilitation of phosphate assimilation by aquatic mycorrhizae of Vallisneria americana Michx

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Presence of vesicular-arbuscular mycorrhizal fungi was found toenhance phosphate uptake in the submersed plant Vallisneriaamericana compared with plants treated with a fungicidal medium(i.e., Captan). Incorporation of 33P-orthophosphate into roottissue in short-term incubations was over 85% greater for plantswith active mycorrhizae. In addition, we measured a fine-scale irongradient and elevated concentrations of solid-phase phosphate in theextensive sheath surrounding the roots. The coupling of fungalsymbionts with phosphorus storage in the sheath may be an importantmechanism of phosphate assimilation in submersed aquatic macrophytes.Contrary to the effect on phosphate uptake, we did not find that15NH4 assimilation by Vallisneria americanaroots wasenhanced by the presence of the mycorrhizal association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, M. F., 1991. The ecology of mycorrhizae. Cambridge University Press, Great Britain, 184 pp.

    Google Scholar 

  • Anderson, J., 1978. Pesticide effects on non target soil microorganisms. In Hill, I. R. & S. J. L. Wright (eds), Pesticide Microbiology (Microbiological Aspects of Pesticide Behavior). Academic Press, New York: 313–533.

    Google Scholar 

  • Aspila, K. I., A. Haig & A. S. Y. Chau, 1976. A semi-automated method for the determination of inorganic, organic and total phosphate in sediment. Analyst 101: 187–197.

    Google Scholar 

  • Bacha, R. E. & L. R. Hossner, 1977. Characteristics of coatings formed on rice roots as affected by iron and manganese additions. Soil Sci. Soc. am. J. 41: 931–935.

    Google Scholar 

  • Banerjee, A. & A. K. Banerjee, 1987. Influence of captan on some microorganisms and microbial processes related to the nitrogen cycle. Plant. Soil 102: 239–245.

    Google Scholar 

  • Beare, M. H., R. W. Parmelee, P. F. Hendrix, W. Cheng, D. C. Coleman & D. A. Crossley, 1992. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol. Monogr. 62: 569–591.

    Google Scholar 

  • Bristow, J. M. & M. Whitcombe, 1971. The role of roots in the nutrition of aquatic vascular plants. Am. J. Bot. 58: 8–13.

    Google Scholar 

  • Caffrey, J. M. & W. M. Kemp, 1990. Nitrogen cycling in sediments with estuarine populations of Potamogeton perfoliatusand Zostera marina. Mar. Ecol. Prog. Ser. 66: 147–160.

    Google Scholar 

  • Carignan, R. & J. Kalff, Jr., 1980. Phosphorus sources for aquatic weeds: water or sediments. Science 207: 987–989.

    Google Scholar 

  • Chambers, R. M. & J. W. Fourqurean, 1991. Alternative criteria for assessing nutrient limitation of a wetland macrophyte (Peltandra virginica(L. Kunth), Aquat. Bot. 40: 305–320.

    Google Scholar 

  • Chaubal, R., G. D. Sharma & R. R. Mishra, 1982. Vesicular-arbuscular mycorrhiza in subtropical aquatic and marshy plant communities. Proc. Indian Acad. Sci. (Plant Science) 91: 69–77.

    Google Scholar 

  • Chen, C. C., J. B. Dixon & F. T. Turner, 1980. Iron coatings on rice roots: morphology and models of development. Soil. Sci. Soc. am. J. 44: 1113–1119.

    Google Scholar 

  • Clayton, J. S. & D. J. Bagyaraj, 1984. Vesicular-arbuscular mycorrhizas in submerged aquatic plants of New Zealand. Aquat. Bot. 19: 251–262.

    Google Scholar 

  • Farmer, A.M., 1985. The occurrence of vesicular-arbuscular mycorrhiza in isoetid-type submerged aquatic macrophytes under naturally varying conditions. Aquat. Bot. 21: 245–249.

    Google Scholar 

  • Fiedler, R. & G. Proksch, 1975. The determination of nitrogen-15 by emission and mass spectrometry in biochemical analysis: a review. Analyt. Chim. Acta 78: 1–62.

    Google Scholar 

  • Glibert, P. M. & D. G. Capone, 1993. Mineralization and assimilation in aquatic, sediment and wetland systems. In Knowles, R. & P. H. Blackburn (eds), Nitrogen Isotope Techniques, 9; Academic Press, Inc., Sand Diego: 243–272.

    Google Scholar 

  • Glibert, P. M., C. Garside, J. A. Fuhrman & M. R. Roman, 1991. Time-dependent coupling of inorganic and organic nitrogen and NH4+ regeneration in the plume of the Chesapeake Bay estuary, USA, and its regulation by large heterotrophs. Limnol. Oceanogr. 36: 895–909.

    Google Scholar 

  • Hensel, P. F., 1992. Nitrogen uptake characteristics of wild celery. M.S. Thesis, The University of Maryland, College Park, MD, 181 pp.

    Google Scholar 

  • Hill, S. M., 1989. Phosphorus uptake and translocation in submersed aquatic Vallisneria americana. M.S. Thesis, The University of Maryland, College Park, MD, 55 pp.

    Google Scholar 

  • Iizumi, H. & A. Hattori, 1982. Growth and organic production of eelgrass (Zostera marinaL.) in temperate waters of the Pacific coast of japan. III The kinetics of nitrogen uptake. Aquat. Bot. 12: 245–256.

    Google Scholar 

  • Iizumi, H., A. Hattori & C. P. McRoy, 1980. Nitrate and nitrite in interstitial waters of eelgrass beds in relation to the rhizosphere. J. exp. mar. Biol. Ecol. 47: 191–201.

    Google Scholar 

  • Jaynes, M. L. & S. R. Carpenter, 1986. Effects of vascular and nonvascular macrophytes on sediment redox and solute dynamics. Ecology 67: 875–882.

    Google Scholar 

  • Kough, J. L., V. Gianinazzi-Pearson & S. Gianinazzi, 1987. Depressed metabolic activity of vesicular-arbuscular mycorrhizal fungi after fungicide applications. New Phytologist 106: 707–715.

    Google Scholar 

  • Leventhal, J. & C. Taylor, 1990. Comparison of methods to determine degree of pyritization. Geochim. Cosmochim. Acta 54: 2621–2625.

    Google Scholar 

  • Long, E. C., 1977. Applications of quench monitoring by Compton edge: the #”. Publication of Scientific Instruments Division, P. O. Box C-19600, Irvine, California 92713, 17 pp.

    Google Scholar 

  • Malloch, D. W., K. A. Pirozynski & P. H. Raven, 1980. Ecological and evolutionary significance for mycorrhizal symbioses in vascular plants (A review). Proc. natn. Acad. Sci. U.S.A. 77: 2113–2118.

    Google Scholar 

  • Mendelssohn, I. A. & M. T. Postek, 1982. Elemental analysis of deposits on the roots of Spartina alternifloraLoisel. Am. J. Bot. 69: 904–912.

    Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press Inc., Oxford, 173 pp.

    Google Scholar 

  • Phillips, J. M. & S. Hayman, 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular Mycorrhizal fungi for rapid assessment of infection. Trans. br. Mycol. Soc. 55: 158–167.

    Google Scholar 

  • Sand-Jensen, K., C. Prahl & H. Stokohlm, 1982. Oxygen release from roots of submerged aquatic macrophytes. Oikos 38: 349–354.

    Google Scholar 

  • Sand-Jensen, K. & M. Søndergaard, 1979. Distribution and quantitative development of aquatic macrophytes in relation to sediment characteristics in oligotrophic Lake Kalgaard, Denmark. Freshwat. Biol. 9: 1–11.

    Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Arnold, London, 610 pp.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry, The Principles and Practice of Statistics in Biological Research; 2nd edn. W. H. Freeman and Co., San Francisco, 859 pp.

    Google Scholar 

  • Søndergaard, M. & S. Laegaard, 1977. Vesicular-arbuscular mycorrhiza in some aquatic vascular plants. Nature 268: 232–233.

    Google Scholar 

  • St.-Cyr, L., D. Fortin & P. G. Campbell, 1993. Microscopic observations of the iron plaque of submerged aquatic plant (Vallisneria americanaMichx). Aquat. Bot. 46: 155–167.

    Google Scholar 

  • Tanner, C. C. & J. S. Clayton, 1985. Vesicular arbuscular mycorrhiza studies with a submerged aquatic plant. Trans. br. Mycol. Soc. 85: 683–688.

    Google Scholar 

  • Tessenow, U. & Y. Baynes, 1975. Redox-dependent accumulation of Fe and Mn in a littoral sediment supporting Isoetes lacustris. Naturwissenschaften 62: 342–343.

    Google Scholar 

  • Vale, C., F. M. Catarino, C. Cortesao & M. I. Cacador, 1990. Presence of metal-rich rhizoconcretions on the roots of Spartina maritima from the salt marshes of the Tagus estuary, Portugal. Sci. tot. envir. 97/98: 617–626.

    Google Scholar 

  • Wigand, C., 1994. The ecological significance of mycorrhizal fungi in the submersed macrophyte Vallisneria americana(Michx) in the upper Chesapeake Bay, Ph.D. dissertation, The University of Maryland, College Park, Maryland, 135 pp.

    Google Scholar 

  • Wigand, C. & J. C. Stevenson, 1994. The presence and possible ecological significance of mycorrhizae of the submersed macrophyte, Vallisneria americana. Estuaries 17: 206–215.

    Google Scholar 

  • Wium-Andersen, S. & J. M. Andersen, 1972. The influence of vegetation on the redox profile of the sediment of Grane Langso, a Danish Lobelialake. Limnol. Oceanogr. 17: 948–952.

    Google Scholar 

  • Woodcock, D., 1978. Microbial degradation of fungicides, fumigants and nematocides. In Hill, I. R. & S. J. L. Wright (eds), Pesticide Microbiology. Academic Press, New York: 731–799.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wigand, C., Stevenson, J.C. Facilitation of phosphate assimilation by aquatic mycorrhizae of Vallisneria americana Michx. Hydrobiologia 342, 35–41 (1997). https://doi.org/10.1023/A:1017071701679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017071701679

Navigation