Perspectives in Drug Discovery and Design

, Volume 12, Issue 0, pp 199–213 | Cite as

The CoMFA steroids as a benchmark dataset for development of 3D QSAR methods

  • Eugene A. Coats


Polymer Steroid Benchmark Dataset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cramer, R. D., III, Patterson, D. E. and Bunce, J. D., Comparative molecular field analysis (CoMFA): 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc., 110 (1988) 5959-5967.Google Scholar
  2. 2.
    Dunn, J. F., Nisula, B. C. and Rodbard, D., Transport of steroid hormones: Binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma, J. Clin. Endocrin. Metab., 2 (1981) 58-68.Google Scholar
  3. 3.
    Mickelson, K. E., Forsthoefel, J. and Westphal, U., Steroid-protein interactions: Human corticosteroid binding globulin-some physicochemical properties and binding specificity, Biochemistry, 20 (1981) 6211-6218.Google Scholar
  4. 4.
    JMP Statistical Discovery Software, Version 3.1, SAS Institute Inc., Cary, NC, U. S. A.Google Scholar
  5. 5.
    Wagener, M., Sadowski, J. and Gasteiger, J., Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks, J. Am Chem., Soc., 117 (1995) 7769-7775.Google Scholar
  6. 6.
    Tripos Inc., 1699 S. Hanley Road, St. Louis, MO 63144, U. S. A.Google Scholar
  7. 7.
    Patterson, D. E., personal communication.Google Scholar
  8. 8.
    Gasteiger, J. and Marsili, M., Iterative partial equalization of orbital electronegativity: A rapid access to atomic charges, Tetrahedron, 36 (1980) 3219-3288.Google Scholar
  9. 9.
    Cho, S. J. and Tropsha, A., Cross-validated R2-guided region selection for comparative molecular field analysis: A simple method to achieve consistent results, J. Med. Chem., 38 (1995) 1060-1066.PubMedGoogle Scholar
  10. 10.
    Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R. and Clementi, S., Generating optimal linear PLS estimations (GOLPE): An advanced chemometric tool for handling 3D QSAR problems, Quant. Struct.-Act. Rel., 12 (1993) 9-20.Google Scholar
  11. 11.
    Norinder, U., Single and domain mode variable selection in 3D QSAR applications, J. Chemometrics, 10 (1996) 95-105.Google Scholar
  12. 12.
    Kellogg, G. E., Kier, L. B., Gaillard, P. and Hall, L. H., E-state fields: Applications to 3D QSAR, J. Comput.-Aided Mol. Design, 10 (1996) 513-520.Google Scholar
  13. 13.
    Abraham, D. J. and Kellogg, G. E., The effect of physical organic properties on hydrophobic fields, J. Comput.-Aided Mol. Design, 8 (1994) 41-49.Google Scholar
  14. 14.
    Jain, A. N., Koile, K. and Chapman, D., Compass: Predicting biological activities from molecular surface properties-performance comparisons on a steroid benchmark, J. Med. Chem., 37 (1994) 2315-2327.PubMedGoogle Scholar
  15. 15.
    Anzali, S., Barnickel, G., Krug, M., Sadowski, J., Wagener, M., Gasteiger, J. and Polanski, J., The comparison of geometric and electronic properties of molecular surfaces by neural networks: Application to the analysis of corticosteroid-binding globulin activity of steroids, J. Comput.-Aided Mol. Design, 10 (1996) 521-534.Google Scholar
  16. 16.
    Hahn, M. and Rogers, D., Receptor surface models: 2. Application to quantitative structure-activity relationships studies, J. Med. Chem., 38 (1995) 2091-2102.Google Scholar
  17. 17.
    Good, A. C., So, S. and Richards, W. G., Structure-activity relationships from molecular similarity matrices, J. Med. Chem., 36 (1993) 433-438.PubMedGoogle Scholar
  18. 18.
    Good, A. C., Peterson, S. J. and Richards, W. G., QSARs from similarity matrices: Technique validation and application in the comparison of different similarity evaluation methods, J. Med. Chem., 36 (1993) 2929-2937.Google Scholar
  19. 19.
    Automated Similarity Package, Oxford Molecular Group, Oxford, U. K.Google Scholar
  20. 20.
    Sadowski, J., personal communication.Google Scholar
  21. 21.
    Klebe, G., Abraham, U. and Mietzner, T., Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, J. Med. Chem., 37 (1994) 4130-4146.Google Scholar
  22. 22.
    Kearsley, S. K. and Smith, G. M., An alternative method for the alignment of molecular structures: Maximizing electrostatic and steric overlap, Tetrahedron Comput. Methodol., 3 (1990) 615-633.Google Scholar
  23. 23.
    Abraham, U. and Kubinyi, H., personal communication.Google Scholar
  24. 24.
    Silverman, B. D. and Platt, D. E., Comparative molecular moment analysis (CoMMA): 3D QSAR without molecular superposition, J. Med. Chem., 39 (1996) 2129-2140.PubMedGoogle Scholar
  25. 25.
    Bravi, G., Gancia, E., Mascagni, P., Pegna, M., Todeschini, R. and Zaliani, A., MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids, J. Comput.-Aided Mol. Design, 11 (1997) 79-92.Google Scholar
  26. 26.
    Schnitker, J., Gopalaswamy, R. and Crippen, G. M., Objective models for steroid binding sites of human globulins, J. Comput.-Aided Mol. Design, 11 (1997) 93-110.Google Scholar
  27. 27.
    Oprea, T. I., Ciubotariu, D., Sulea, T. I. and Simon, Z., Comparison of the minimal steric difference (MTD) and comparative molecular field analysis (CoMFA) methods for analysis of binding of steroids to carrier proteins, Quant. Struct-Act. Relat., 12 (1993) 21-26.Google Scholar
  28. 28.
    Oprea, T. I., personal communication.Google Scholar
  29. 29.
    Vorpagel, E. R., Analysis of steroid binding using apex-3D and 3D QSAR models. 210th American Chemical Society Meeting, Chicago, 1995, COMP-0125.Google Scholar
  30. 30.
    Golender, V. E. and Vorpagel, E. R., Computer-assisted pharmacophore identification, In Kubinyi, H. (Ed.) 3D-QSAR in drug design: Theory, methods, and applications, ESCOM, Leiden, The Netherlands, 1993, pp. 137-149.Google Scholar
  31. 31.
    Vorpagel, E. R., personal communication.Google Scholar
  32. 32.
    Kubinyi, H., A general view on similarity and QSAR studies, In van de Waterbeemd, H., Testa, B. and Folkers, G. (Eds.) Computer-assisted lead finding and optimization, Proceedings of the 11th European Symposium on Quantitative Structure-Activity Relationships, Lausanne, Switzerland, Verlag Helvetica Chimica Acta and VCH: Basel, Weinheim, 1997, pp. 7-28.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Eugene A. Coats
    • 1
  1. 1.Amylin Pharmaceuticals, Inc.San DiegoU.S.A.

Personalised recommendations