Skip to main content
Log in

Freshwater picocyanobacteria along a trophic gradient and light quality range

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Picocyanobacterial abundance and their contribution to the total phytoplankton biomass, estimated as chlorophyll a, was investigated in 32 deep and shallow lakes. The lake series covered a wide range of natural and artificial lakes, from high altitude clear lakes and deep, large subalpine lakes through large shallow lakes, small reservoirs and fish ponds. The chlorophyll a concentrations ranged between 0.2 and 390 µg l-1. No simple relation existed between trophic state and the abundance of picocyanobacterial, mainly represented by Synechococcus spp. Below 10 µg Chl a l-1 the percentage contribution of picocyanobacteria biomass to total phytoplankton biomass exceeded 70% in some cases, whereas above 100 µg Chl a l-1, the highest contribution was only 10%. At low chlorophyll a concentrations phycoerythrin-rich picocyanobacteria (PE) dominated almost exclusively but their contribution never exceeded 10% of the total picocyanobacterial abundance when chlorophyll a concentration was higher than 50 µg l-1. Above this value there was high light attenuation and a shift of the maximum light penetration from the blue-green towards the red portion of the spectrum. In this underwater light climate phycocyanin-rich picocyanobacteria (PC) dominated. In the lakes chosen for their representation of ranges in trophy and light quality, PC cells prevailed over the PE when vertical attenuation coefficient of PAR was higher than 2.25 m-1 and red light penetrated farthest. PE cells were 100% when the vertical attenuation coefficient of PAR was lower than 0.55 m-1 and the green and blue were the most penetrating lights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atlas, D. & T. T. Bannister, 1980. Dependence of mean spectral extinction coefficient of phytoplankton on depth, water-colour, and species. Limnol. Oceanogr. 25: 157–159.

    CAS  Google Scholar 

  • Burns, C. W. & J. G. Stockner, 1991. Picoplankton in six New Zealand lakes: Abundance in relation to season and trophic state. Int. Rev. ges. Hydrobiol. 76: 523–536.

    Google Scholar 

  • Callieri, C. & M. L. Pinolini, 1995. Picoplankton in Lake Maggiore, Italy. Int. Rev. ges. Hydrobiol. 80: 491–501.

    Google Scholar 

  • Callieri, C., E. Amicucci, R. Bertoni & L. Vörös, 1996. Fluorometric characterization of two picocyanobacteria strains from different underwater light quality. Int. Rev. ges. Hydrobiol. 81: 13–23.

    CAS  Google Scholar 

  • Glover, H. E., M. D. Keller & R. R. L. Guillard, 1986. Light quality and oceanic ultraphytoplankters. Nature 319: 142–143.

    Article  Google Scholar 

  • Hauschild, C. A., H. J. G. McMurter & F. R. Pick, 1991. Effect of spectral quality on growth and pigmentation of picocyanobacteria. J. Phycol. 27: 698–702.

    Article  Google Scholar 

  • Hawley, G. R. W. & B. A. Whitton, 1991. Seasonal changes in chlorophyll-containing picoplankton populations of ten lakes in Northern England. Int. Rev. ges. Hydrobiol. 76: 545–554.

    Google Scholar 

  • Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll a determination: improvements in methodology. Oikos 30: 438–447.

    CAS  Google Scholar 

  • Iwamura, T., H. Nagai & S. Ishimura, 1970. Improved methods for determining contents of chlorophyll, protein, ribonucleic acid and deoxyribonucleic acid in plankton populations. Int. Rev. ges. Hydrobiol. 55: 131–147.

    CAS  Google Scholar 

  • Kirk, J. T. O., 1983. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, London, New York, 401 pp.

    Google Scholar 

  • Kirk, J. T. O., 1992. A nature and measurement of the light environment in the ocean. In P.G. Falkowski & A. D. Woodhead (eds), Primary production and biochemical cycles in the sea. Plenum Press, New York: 9–29.

    Google Scholar 

  • Kishino, M., C. R. Booth & N. Okami, 1984. Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter and pure water. Limnol. Oceanogr. 29: 340–349.

    Google Scholar 

  • Krogman, D. K., 1973. Photosynthetic reactions and components of thylakoids. New York, 200 pp.

  • Pick, F. R., 1991. The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol. Oceanogr. 36: 1457–1462.

    Article  CAS  Google Scholar 

  • Søndergaard, M., 1990. Picophytoplankton in Danish lakes. Verh. int. Ver. Limnol. 24: 609–612.

    Google Scholar 

  • Stainton, M. P.,M. J. Capel & F.A. J. Armstrong, 1974. The chemical analysis of fresh waters. Envir. Can. Spec. Publ. No. 5, Ottawa, 119 pp.

  • Stockner, J. G., 1988. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33: 765– 775.

    Article  CAS  Google Scholar 

  • Stockner, J. G., 1991. Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int. Rev. ges. Hydrobiol. 76: 483–492.

    Google Scholar 

  • Takamura, N. & Y. Nojiri, 1994. Picophytoplankton biomass in relation to lake trophic state and the TN:TP ratio of lake water in Japan. J. Phycol. 30: 439–444.

    Article  CAS  Google Scholar 

  • Talling, J. F. & D. Driver, 1961. Some problems in the estimation of chlorophyll a in phytoplankton. 10th Pacific Sci. Cong. Honolulu: 142–146.

  • Talling, J. F., 1971. The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitt. int. Ver. Limnol. 19: 214–243.

    Google Scholar 

  • Tilzer, M.M., 1983. The importance of fractional light absorption by photosynthesis pigments for phytoplankton productivity in Lake Constance. Limnol. Oceanogr. 28: 833–846.

    CAS  Google Scholar 

  • Tilzer, M. M., N. Stambler & C. Lovengreen, 1995. The role of phytoplankton in determining the underwater light climate in Lake Constance. Hydrobiologia 316: 161–172.

    Article  CAS  Google Scholar 

  • Vörös, L. & J. Padisák, 1991. Phytoplankton biomass and chlorophyll a in some shallow lakes in central Europe. Hydrobiologia 215: 111–119.

    Google Scholar 

  • Vörös, L., P. Gulyás & J. Németh, 1991. Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Int. Rev. ges. Hydrobiol. 76: 617–629.

    Google Scholar 

  • Waterbury, J. B. S., S.W. Watson, F.W. Valois & D. G. Franks, 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can. Bull. Fish. Aquat. Sci. 214: 71–120.

    Google Scholar 

  • Wyman, M. & P. Fay, 1987. Acclimation to the natural light climate. In P. Fay & C. Van Baalen (eds), The cyanobacteria. Elsevier, Amsterdam: 347–376.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vörös, L., Callieri, C., Balogh, K.V. et al. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369, 117–125 (1998). https://doi.org/10.1023/A:1017026700003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017026700003

Navigation